

Project Goals

 Expand the field of active vibration suppression Implement novel controls approaches

Macro-manipulator

A cantilevered beam represents a long arm that would move the smaller robot into position.

Micro-manipulator

This research uses a micromanipulator known as SAMII which stands for Small Articulated Manipulator II. SAMII is small and rigid compared to his long, flexible base.

Email: gtg708j@mail.gatech.edu

Active Mass Damping in Flexible Robotics

Abstract

This research focuses on vibration suppression in long reach robots, by using the motion of a micro-manipulator to damp vibration of a macromanipulator.

The above graph shows that active mass damping significantly reduces the duration of vibrations caused by motion of the micro-manipulator.

Block Diagram

A block diagram of the system is shown above. It is assumed that the motion control loop is designed first and then the active mass damping is added.

Recent Work: Instability

While attempting to recreate the work of previous students, an instability problem was uncovered. Interaction between the actuator and first two modes of the flexible base has been highlighted as a cause of the instability. System identification and root locus analysis have lead to physical insight into the cause of the instability.

by Ryan Krauss

above (acceleration/angular position).

Physical Insight

The accelerometer moves in opposite directions for the first two modes. While the controller added damping to mode Mode ² 1 it subtracted damping from accelerometer mode 2.

Root Locus

Root locus analysis played a key role in understanding the cause of instability and enabled possible changes to the system to be simulated. The plot at left shows a root locus of the initial controller. Damping is being added to the first mode, but subtracted from the second mode so that the second mode is destabilized.

Credits

the work of previous students: David Cannon •Cameron Loper •Lynnane George

Future Direction

- •Model the interaction between the structure and the actuators more precisely
- •Develop a mass damping controller that produces no
- Investigate global stability of the controller

Spring 2004

Advisor: •Dr. Wayne Book

