
Chapter 1

Three Mode Pole Placement Controller

1.1 Introduction

During the fall semester of 2003, I designed a pole placement controller to place the first two lightly damped
modes of SAMII at pole locations with higher damping, but with the same natural frequencies. This first attempt
at a pole placement controller made the third mode unstable.

At the end of last semester, I curve fit a model that included the first three modes of the flexible base to the bode
data. This curve fitting was done to enable a pole placement controller design that placed the first three modes of
the flexible base. Obviously, there will always be unmodeled modes in the system. It was my hope that placing
the third mode would place the unmodeled modes above the bandwidth of the hydraulic actuators.

This section details the design and implementation of the three mode pole placement controller/observer in-
cluding a derivation of the state-space model from the transfer function model.

1.2 State-Space Model Derivation

A controllable canonical state-space model is derived from a transfer function representation of the system. The
results of this derivation are output to an m-file that implements this model numerically with the coefficients from
curve fitting done last semester. This model is verified in section 1.3 by overlaying bode plots generated with the
state-space model with those generated with the transfer function model and from experimental data.

1.2.1 Transfer Function Manipulation

The transfer funciton forθ/d can be written as

θ

d
=

ωd
2 (s2 + 2ζ2ω2s+ ω2

2) τ

sω2
2 (s2 + 2ζdωds+ ωd

2) (s+ τ)
(1.1)

The transfer function for̈x/θ can be written as

ẍ

θ
=

s4B1

s2 + 2ζ1ω1s+ ω1
2

+
s4B2

s2 + 2ζ2ω2s+ ω2
2

+
s4B3

s2 + 2ζ3ω3s+ ω3
2

(1.2)
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multiplying equation 1.2 by equation 1.1 allows the numerator of the transfer function betweenẍ/d to be written
as

Nx =
(
s2 + 2ζ3ω3s+ ω3

2
) (
s2 + 2ζ2ω2s+ ω2

2
)
s4τωd

2B1

+
(
s2 + 2ζ3ω3s+ ω3

2
) (
s2 + 2ζ1ω1s+ ω1

2
)
s4τωd

2B2

+
(
s2 + 2ζ2ω2s+ ω2

2
) (
s2 + 2ζ1ω1s+ ω1

2
)
s4τωd

2B3 (1.3)

The denominator of this transfer function can be written as

D =
(
s2 + 2ζ3ω3s+ ω3

2
) (
s2 + 2ζ1ω1s+ ω1

2
)
sω2

2
(
s2 + 2ζdωds+ ωd

2
)

(s+ τ) (1.4)

For the sake of the state-space representation, we will useD as the common denominator for the tranfer functions
The numerator and denominator of the transfer functionθ/d would need to be mulplied by the term

D

Dθ

=
(
s2 + 2ζ3ω3s+ ω3

2
) (
s2 + 2ζ1ω1s+ ω1

2
)

(1.5)

Expanding the denominator gives

D = s8ω2
2

+
(
2ζ1ω1ω2

2 + ω2
2τ + 2ω2

2ζdωd + 2ω2
2ζ3ω3

)
s7

+
(
4ω2

2ζ3ω3ζdωd + 2ω2
2ζdωdτ + ω1

2ω2
2 + 2ω2

2ζ1ω1τ + 4ω2
2ζ1ω1ζdωd + ω2

2ωd
2 + 2ω2

2ζ3ω3τ + 4ω2
2ζ1ω1ζ3ω3 + ω2

2ω3
2
)
s6

+
(
2ω2

2ω3
2ζdωd + 4ω2

2ζ1ω1ζ3ω3τ + ω2
2τωd

2 + 2ω2
2ζ1ω1ωd

2 + 2ω2
2ζ3ω3ωd

2 + 2ω2
2ω1

2ζdωd + 4ω2
2ζ1ω1ζdωdτ + ω2

2ω1
2τ + 4ω2

2ζ3ω3ζdωdτ + 8ω2
2ζ1ω1ζ3ω3ζdωd + 2ω2

2ζ1ω1ω3
2 + ω2

2ω3
2τ + 2ω2

2ω1
2ζ3ω3

)
s5

+
(
2ω2

2ω3
2ζdωdτ + 4ω2

2ζ1ω1ω3
2ζdωd + ω2

2ω1
2ω3

2 + ω2
2ω1

2ωd
2 + 2ω2

2ζ3ω3ωd
2τ + 2ω2

2ζ1ω1ω3
2τ + 2ω2

2ω1
2ζdωdτ + 2ω2

2ω1
2ζ3ω3τ + 8ω2

2ζ1ω1ζ3ω3ζdωdτ + ω2
2ω3

2ωd
2 + 4ω2

2ζ1ω1ζ3ω3ωd
2 + 2ω2

2ζ1ω1ωd
2τ + 4ω2

2ω1
2ζ3ω3ζdωd

)
s4

+
(
ω2

2ω1
2ωd

2τ + 4ω2
2ζ1ω1ω3

2ζdωdτ + 4ω2
2ω1

2ζ3ω3ζdωdτ + ω2
2ω3

2ωd
2τ + 2ω2

2ω1
2ω3

2ζdωd + 2ω2
2ζ1ω1ω3

2ωd
2 + 4ω2

2ζ1ω1ζ3ω3ωd
2τ + 2ω2

2ω1
2ζ3ω3ωd

2 + ω2
2ω1

2ω3
2τ
)
s3

+
(
2ω2

2ω1
2ω3

2ζdωdτ + ω2
2ω1

2ω3
2ωd

2 + 2ω2
2ω1

2ζ3ω3ωd
2τ + 2ω2

2ζ1ω1ω3
2ωd

2τ
)
s2

+sω2
2ω1

2ω3
2ωd

2τ (1.6)

Expanding the numerator forθ/d gives

Nθ = τωd
2s6

+
(
2τωd

2ζ2ω2 + 2τωd
2ζ3ω3 + 2τωd

2ζ1ω1

)
s5

+
(
ω2

2τωd
2 + 4τωd

2ζ2ω2ζ1ω1 + 4τωd
2ζ1ω1ζ3ω3 + τωd

2ω1
2 + 4τωd

2ζ2ω2ζ3ω3 + τωd
2ω3

2
)
s4

+
(
2τωd

2ζ2ω2ω1
2 + 2ω2

2ζ1ω1ωd
2τ + 2ω2

2ζ3ω3ωd
2τ + 2τωd

2ζ2ω2ω3
2 + 8τωd

2ζ2ω2ζ3ω3ζ1ω1 + 2τωd
2ζ1ω1ω3

2 + 2τωd
2ω1

2ζ3ω3

)
s3

+
(
4τωd

2ζ2ω2ω3
2ζ1ω1 + ω2

2ω3
2ωd

2τ + 4τωd
2ζ2ω2ζ3ω3ω1

2 + 4ω2
2ζ1ω1ζ3ω3ωd

2τ + ω2
2ω1

2ωd
2τ + ω1

2ω3
2ωd

2τ
)
s2

+
(
2ω2

2ζ1ω1ω3
2ωd

2τ + 2ω2
2ω1

2ζ3ω3ωd
2τ + 2τωd

2ζ2ω2ω3
2ω1

2
)
s

+ω2
2ω1

2ω3
2ωd

2τ (1.7)
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Expanding the numerator for̈x/d gives

Nx =
(
τωd

2B1 + τωd
2B2 + τωd

2B3

)
s8

+
(
(2ζ3ω3 + 2ζ1ω1) τωd

2B2 + (2ζ2ω2 + 2ζ1ω1) τωd
2B3 + (2ζ3ω3 + 2ζ2ω2) τωd

2B1

)
s7

+
((
ω2

2 + 4ζ1ω1ζ2ω2 + ω1
2
)
τωd

2B3 +
(
ω3

2 + 4ζ1ω1ζ3ω3 + ω1
2
)
τωd

2B2 +
(
ω3

2 + 4ζ2ω2ζ3ω3 + ω2
2
)
τωd

2B1

)
s6

+
((

2ζ1ω1ω2
2 + 2ω1

2ζ2ω2

)
τωd

2B3 +
(
2ζ2ω2ω3

2 + 2ω2
2ζ3ω3

)
τωd

2B1 +
(
2ζ1ω1ω3

2 + 2ω1
2ζ3ω3

)
τωd

2B2

)
s5

+
(
ω2

2ω3
2ωd

2τB1 + ω1
2ω3

2ωd
2τB2 + ω2

2ω1
2ωd

2τB3

)
s4 (1.8)

1.2.2 Controllable Cannonical Form

For a system with the transfer function

y

u
=
bns

n + bn−1s
n−1 + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0

(1.9)

the controllable cannonical realization would be

A =


0 1 0 0
...

... .. . 0
0 · · · 0 1

−a0 −a1 · · · −an−1

 (1.10)

B =


0
...
0
1

 (1.11)

C =
[
b0 − bna0 b1 − bna1 · · · bn−1 − bnan−1

]
(1.12)

D = bn (1.13)

For this systemn = 8 and the coefficients of the denominator polynomial are

a0 = 0 (1.14)

a1 = ω2
2ω1

2ω3
2ωd

2τ (1.15)

a2 = 2ω2
2ω1

2ω3
2ζdωdτ + ω2

2ω1
2ω3

2ωd
2 + 2ω2

2ω1
2ζ3ω3ωd

2τ + 2ω2
2ζ1ω1ω3

2ωd
2τ (1.16)

a3 = ω2
2ω1

2ωd
2τ+4ω2

2ζ1ω1ω3
2ζdωdτ+4ω2

2ω1
2ζ3ω3ζdωdτ+ω2

2ω3
2ωd

2τ+2ω2
2ω1

2ω3
2ζdωd+2ω2

2ζ1ω1ω3
2ωd

2+4ω2
2ζ1ω1ζ3ω3ωd

2τ+2ω2
2ω1

2ζ3ω3ωd
2+ω2

2ω1
2ω3

2τ
(1.17)

a4 = 2ω2
2ω3

2ζdωdτ+4ω2
2ζ1ω1ω3

2ζdωd+ω2
2ω1

2ω3
2+ω2

2ω1
2ωd

2+2ω2
2ζ3ω3ωd

2τ+2ω2
2ζ1ω1ω3

2τ+2ω2
2ω1

2ζdωdτ+2ω2
2ω1

2ζ3ω3τ+8ω2
2ζ1ω1ζ3ω3ζdωdτ+ω2

2ω3
2ωd

2+4ω2
2ζ1ω1ζ3ω3ωd

2+2ω2
2ζ1ω1ωd

2τ+4ω2
2ω1

2ζ3ω3ζdωd

(1.18)
a5 = 2ω2

2ω3
2ζdωd+4ω2

2ζ1ω1ζ3ω3τ+ω2
2τωd

2+2ω2
2ζ1ω1ωd

2+2ω2
2ζ3ω3ωd

2+2ω2
2ω1

2ζdωd+4ω2
2ζ1ω1ζdωdτ+ω2

2ω1
2τ+4ω2

2ζ3ω3ζdωdτ+8ω2
2ζ1ω1ζ3ω3ζdωd+2ω2

2ζ1ω1ω3
2+ω2

2ω3
2τ+2ω2

2ω1
2ζ3ω3

(1.19)
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a6 = 4ω2
2ζ3ω3ζdωd+2ω2

2ζdωdτ+ω1
2ω2

2+2ω2
2ζ1ω1τ+4ω2

2ζ1ω1ζdωd+ω2
2ωd

2+2ω2
2ζ3ω3τ+4ω2

2ζ1ω1ζ3ω3+ω2
2ω3

2

(1.20)
a7 = 2ζ1ω1ω2

2 + ω2
2τ + 2ω2

2ζdωd + 2ω2
2ζ3ω3 (1.21)

a8 = ω2
2 (1.22)

becausea8 6= 1 all of the coefficients (an andbn) must be divided bya6 before being plugged into the matix
representation.
With θ as the output, the coefficients of the numerator polynomial are

b0 = ω2
2ω1

2ω3
2ωd

2τ (1.23)

b1 = 2ω2
2ζ1ω1ω3

2ωd
2τ + 2ω2

2ω1
2ζ3ω3ωd

2τ + 2τωd
2ζ2ω2ω3

2ω1
2 (1.24)

b2 = 4τωd
2ζ2ω2ω3

2ζ1ω1 + ω2
2ω3

2ωd
2τ + 4τωd

2ζ2ω2ζ3ω3ω1
2 + 4ω2

2ζ1ω1ζ3ω3ωd
2τ + ω2

2ω1
2ωd

2τ + ω1
2ω3

2ωd
2τ

(1.25)
b3 = 2τωd

2ζ2ω2ω1
2+2ω2

2ζ1ω1ωd
2τ+2ω2

2ζ3ω3ωd
2τ+2τωd

2ζ2ω2ω3
2+8τωd

2ζ2ω2ζ3ω3ζ1ω1+2τωd
2ζ1ω1ω3

2+2τωd
2ω1

2ζ3ω3

(1.26)
b4 = ω2

2τωd
2 + 4τωd

2ζ2ω2ζ1ω1 + 4τωd
2ζ1ω1ζ3ω3 + τωd

2ω1
2 + 4τωd

2ζ2ω2ζ3ω3 + τωd
2ω3

2 (1.27)

b5 = 2τωd
2ζ2ω2 + 2τωd

2ζ3ω3 + 2τωd
2ζ1ω1 (1.28)

b6 = τωd
2 (1.29)

With ẍ as the output, the coefficients of the numerator polynomial are

b0 = 0 (1.30)

b1 = 0 (1.31)

b2 = 0 (1.32)

b3 = 0 (1.33)

b4 = ω2
2ω3

2ωd
2τB1 + ω1

2ω3
2ωd

2τB2 + ω2
2ω1

2ωd
2τB3 (1.34)

b5 = 2τωd
2B3ζ1ω1ω2

2+2τωd
2B3ω1

2ζ2ω2+2τωd
2B1ζ2ω2ω3

2+2τωd
2B1ω2

2ζ3ω3+2τωd
2B2ζ1ω1ω3

2+2τωd
2B2ω1

2ζ3ω3

(1.35)
b6 = τωd

2B3ω2
2+4τωd

2B3ζ1ω1ζ2ω2+τωd
2B3ω1

2+τωd
2B2ω3

2+4τωd
2B2ζ1ω1ζ3ω3+τωd

2B2ω1
2+τωd

2B1ω3
2+4τωd

2B1ζ2ω2ζ3ω3+τωd
2B1ω2

2

(1.36)
b7 = 2τωd

2B2ζ3ω3 + 2τωd
2B2ζ1ω1 + 2τωd

2B3ζ2ω2 + 2τωd
2B3ζ1ω1 + 2τωd

2B1ζ3ω3 + 2τωd
2B1ζ2ω2 (1.37)

b8 = τωd
2B1 + τωd

2B2 + τωd
2B3 (1.38)

Finding the transfer functionθ/d from the matrices according to

θ

d
= C (sI−A)−1 B +D (1.39)

gives
θ

d
=

(s2 + 2ζ2ω2s+ ω2
2) τωd

2

sω2
2 (s+ τ) (s2 + 2sζdωd + ωd

2)
(1.40)
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giving us back what we started with and proving that the state-space representation is correct. Similarly the
numerator of the transfer function̈x/d from the matrices is

Nx = s4
(
s2 + 2ζ2ω2s+ ω2

2
) (
s2 + 2sζ3ω3 + ω3

2
)
ωd

2τB1+s
4
(
s2 + 2sζ3ω3 + ω3

2
) (
s2 + 2sζ1ω1 + ω1

2
)
ωd

2τB2+s
4
(
s2 + 2ζ2ω2s+ ω2

2
) (
s2 + 2sζ1ω1 + ω1

2
)
ωd

2τB3

(1.41)
which is exactly what we started with in equation 1.3. and the denominator can be written as

D = sω2
2 (s+ τ)

(
s2 + 2sζdωd + ωd

2
) (
s2 + 2sζ3ω3 + ω3

2
) (
s2 + 2sζ1ω1 + ω1

2
)

(1.42)

The state space matrices are given by

A =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 −ω1
2ω3

2ωd
2τ −2ω2

2ω1
2ω3

2ζdωdτ−ω2
2ω1

2ω3
2ωd

2−2ω2
2ω1

2ζ3ω3ωd
2τ−2ω2

2ζ1ω1ω3
2ωd

2τ
ω2

2
−ω2

2ω1
2ωd

2τ−4ω2
2ζ1ω1ω3

2ζdωdτ−4ω2
2ω1

2ζ3ω3ζdωdτ−ω2
2ω3

2ωd
2τ−2ω2

2ω1
2ω3

2ζdωd−2ω2
2ζ1ω1ω3

2ωd
2−4ω2

2ζ1ω1ζ3ω3ωd
2τ−2ω2

2ω1
2ζ3ω3ωd

2−ω2
2ω1

2ω3
2τ

ω2
2

−2ω2
2ω3

2ζdωdτ−4ω2
2ζ1ω1ω3

2ζdωd−ω2
2ω1

2ω3
2−ω2

2ω1
2ωd

2−2ω2
2ζ3ω3ωd

2τ−2ω2
2ζ1ω1ω3

2τ−2ω2
2ω1

2ζdωdτ−2ω2
2ω1

2ζ3ω3τ−8ω2
2ζ1ω1ζ3ω3ζdωdτ−ω2

2ω3
2ωd

2−4ω2
2ζ1ω1ζ3ω3ωd

2−2ω2
2ζ1ω1ωd

2τ−4ω2
2ω1

2ζ3ω3ζdωd

ω2
2

−2ω2
2ω3

2ζdωd−4ω2
2ζ1ω1ζ3ω3τ−ω2

2τωd
2−2ω2

2ζ1ω1ωd
2−2ω2

2ζ3ω3ωd
2−2ω2

2ω1
2ζdωd−4ω2

2ζ1ω1ζdωdτ−ω2
2ω1

2τ−4ω2
2ζ3ω3ζdωdτ−8ω2

2ζ1ω1ζ3ω3ζdωd−2ω2
2ζ1ω1ω3

2−ω2
2ω3

2τ−2ω2
2ω1

2ζ3ω3

ω2
2

−4ω2
2ζ3ω3ζdωd−2ω2

2ζdωdτ−ω1
2ω2

2−2ω2
2ζ1ω1τ−4ω2

2ζ1ω1ζdωd−ω2
2ωd

2−2ω2
2ζ3ω3τ−4ω2

2ζ1ω1ζ3ω3−ω2
2ω3

2

ω2
2

−2ζ1ω1ω2
2−ω2

2τ−2ω2
2ζdωd−2ω2

2ζ3ω3

ω2
2


(1.43)

C =

 ω1
2ω3

2ωd
2τ 2ω2

2ζ1ω1ω3
2ωd

2τ+2ω2
2ω1

2ζ3ω3ωd
2τ+2τωd

2ζ2ω2ω3
2ω1

2

ω2
2

4τωd
2ζ2ω2ω3

2ζ1ω1+ω2
2ω3

2ωd
2τ+4τωd

2ζ2ω2ζ3ω3ω1
2+4ω2

2ζ1ω1ζ3ω3ωd
2τ+ω2

2ω1
2ωd

2τ+ω1
2ω3

2ωd
2τ

ω2
2

2τωd
2ζ2ω2ω1

2+2ω2
2ζ1ω1ωd

2τ+2ω2
2ζ3ω3ωd

2τ+2τωd
2ζ2ω2ω3

2+8τωd
2ζ2ω2ζ3ω3ζ1ω1+2τωd

2ζ1ω1ω3
2+2τωd

2ω1
2ζ3ω3

ω2
2

ω2
2τωd

2+4τωd
2ζ2ω2ζ1ω1+4τωd

2ζ1ω1ζ3ω3+τωd
2ω1

2+4τωd
2ζ2ω2ζ3ω3+τωd

2ω3
2

ω2
2

2τωd
2ζ2ω2+2τωd

2ζ3ω3+2τωd
2ζ1ω1

ω2
2

τωd
2

ω2
2 0

0 −(τωd
2B1+τωd

2B2+τωd
2B3)ω1

2ω3
2ωd

2τ

ω2
2 −(τωd

2B1+τωd
2B2+τωd

2B3)(2ω2
2ω1

2ω3
2ζdωdτ+ω2

2ω1
2ω3

2ωd
2+2ω2

2ω1
2ζ3ω3ωd

2τ+2ω2
2ζ1ω1ω3

2ωd
2τ)

ω2
4 −(τωd

2B1+τωd
2B2+τωd

2B3)(ω2
2ω1

2ωd
2τ+4ω2

2ζ1ω1ω3
2ζdωdτ+4ω2

2ω1
2ζ3ω3ζdωdτ+ω2

2ω3
2ωd

2τ+2ω2
2ω1

2ω3
2ζdωd+2ω2

2ζ1ω1ω3
2ωd

2+4ω2
2ζ1ω1ζ3ω3ωd

2τ+2ω2
2ω1

2ζ3ω3ωd
2+ω2

2ω1
2ω3

2τ)
ω2

4
ω2

2ω3
2ωd

2τB1+ω1
2ω3

2ωd
2τB2+ω2

2ω1
2ωd

2τB3

ω2
2 − (τωd

2B1+τωd
2B2+τωd

2B3)(2ω2
2ω3

2ζdωdτ+4ω2
2ζ1ω1ω3

2ζdωd+ω2
2ω1

2ω3
2+ω2

2ω1
2ωd

2+2ω2
2ζ3ω3ωd

2τ+2ω2
2ζ1ω1ω3

2τ+2ω2
2ω1

2ζdωdτ+2ω2
2ω1

2ζ3ω3τ+8ω2
2ζ1ω1ζ3ω3ζdωdτ+ω2

2ω3
2ωd

2+4ω2
2ζ1ω1ζ3ω3ωd

2+2ω2
2ζ1ω1ωd

2τ+4ω2
2ω1

2ζ3ω3ζdωd)
ω2

4
2τωd

2B3ζ1ω1ω2
2+2τωd

2B3ω1
2ζ2ω2+2τωd

2B1ζ2ω2ω3
2+2τωd

2B1ω2
2ζ3ω3+2τωd

2B2ζ1ω1ω3
2+2τωd

2B2ω1
2ζ3ω3

ω2
2 − (τωd

2B1+τωd
2B2+τωd

2B3)(2ω2
2ω3

2ζdωd+4ω2
2ζ1ω1ζ3ω3τ+ω2

2τωd
2+2ω2

2ζ1ω1ωd
2+2ω2

2ζ3ω3ωd
2+2ω2

2ω1
2ζdωd+4ω2

2ζ1ω1ζdωdτ+ω2
2ω1

2τ+4ω2
2ζ3ω3ζdωdτ+8ω2

2ζ1ω1ζ3ω3ζdωd+2ω2
2ζ1ω1ω3

2+ω2
2ω3

2τ+2ω2
2ω1

2ζ3ω3)
ω2

4
τωd

2B3ω2
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2B3ω1

2+τωd
2B2ω3

2+4τωd
2B2ζ1ω1ζ3ω3+τωd

2B2ω1
2+τωd

2B1ω3
2+4τωd

2B1ζ2ω2ζ3ω3+τωd
2B1ω2

2

ω2
2 − (τωd

2B1+τωd
2B2+τωd

2B3)(4ω2
2ζ3ω3ζdωd+2ω2

2ζdωdτ+ω1
2ω2

2+2ω2
2ζ1ω1τ+4ω2

2ζ1ω1ζdωd+ω2
2ωd

2+2ω2
2ζ3ω3τ+4ω2

2ζ1ω1ζ3ω3+ω2
2ω3

2)
ω2

4
2τωd

2B2ζ3ω3+2τωd
2B2ζ1ω1+2τωd

2B3ζ2ω2+2τωd
2B3ζ1ω1+2τωd

2B1ζ3ω3+2τωd
2B1ζ2ω2

ω2
2 − (τωd

2B1+τωd
2B2+τωd

2B3)(2ζ1ω1ω2
2+ω2

2τ+2ω2
2ζdωd+2ω2

2ζ3ω3)
ω2

4


(1.44)

D =

 0

τωd
2B1+τωd

2B2+τωd
2B3

ω2
2

 (1.45)

This state space system representation is output to the m-fileccfaccelwnums3modes.m .
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1.3 State-Space Model Verification

Figure 1.1 overlays bode plots for the hydraulic actuator from the transfer function and state-space models with
experimental data. Figure 1.2 does the same for the flexible base model. The close agreement between the
transfer function and state-space curves gives me a high degree of confidence that the state-space derivation was
done correctly. The reasonable agreement between the bode plots generated with the state-space model and the
experimental data gives me reasonable confidence that the model will accurately represent the physical system.
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Figure 1.1: Comparison of bode plots from transefer function and state-space based models and experi-
mental data for the hydraulic actuator. The input is the voltage into the servo-valve of joint 2. The output
is joint 2 angular position. The parameters for the models are from a curve fit with a phase weighting of
0.1.
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Figure 1.2: Comparison of bode plots from transfer function and state-space based models and experimen-
tal data for the flexible base. The input is joint 2 angular position and the output is base acceleration. The
parameters for the models are from a curve fit with a phase weighting of 0.1.
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1.4 Digital Controller/Observer Design

This file documents the design of a digital state feedback observer controller for SAMII. The open loop pole
locations for SAMII operating around a nominal configuration of(−90◦, 90◦, 90◦, 0◦, 0◦, 0◦) are

pol =



0
−158.9

−5.275 + 156.7i
−5.275 − 156.7i
−7.729 + 54.74i
−7.729 − 54.74i
−0.3245 + 10.88i
−0.3245 − 10.88i


(1.46)

The poles for a system having unityθ feedback and no vibration suppression are

pθfb =



−5.275 + 156.7i
−5.275 − 156.7i

−128.3
−4.214 + 52.84i
−4.214 − 52.84i

−37.56
−0.3245 + 10.88i
−0.3245 − 10.88i


(1.47)

The desired pole locations for the state feedback system being designed are

pdes =



−110.9 − 110.9i
−110.9 + 110.9i

−128.3
−37.48 − 37.48i
−37.48 + 37.48i

−37.56
−7.698 − 7.698i
−7.698 + 7.698i


(1.48)

Figure 1.3 plots the real vs. imaginary parts of these poles.
Figure 1.4 plots the real vs. imaginary parts of the digital poles.
Figure 1.5 shows a bode plot forθ/v for the closed loop state feedback system with the desired pole locations.
Figure 1.6 shows a bode plot for observer system designed by pole placement.
Figure 1.7 shows the step response of the state feedback controller observer without any noise.
Figure 1.8 shows the step response of the state feedback controller observer system from a simulation in

Simulink with accelerometer noise.
While the acceleration signals from Figures 1.7 and 1.8 look promising, this controller made the thhird mode

of the flexible base unstable when implemented experimentally. This third mode instability lead me to refit a
wider frequency range of my bode data to include the third mode in my models and to begin redesigning a new
controller similar to this one but considering the third mode.
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Figure 1.3: Pole locations for the open loop system, a controller for SAMII that has onlyθ feedback (i.e. no
vibration suppression), and the desired pole locations for a full state feedback system.
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Figure 1.4: Digital pole locations for the open loop system, a controller for SAMII that has onlyθ feedback
(i.e. no vibration suppression), and the desired pole locations for a full state feedback system.
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Figure 1.5: Bode plots forθ/v and ẍ/θ for the SAMII control system with the desired closed loop poles.
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Figure 1.6: Bode plots for an observer system designed by pole placement.
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Figure 1.7: Step response for the state feedback controller observer system with no noise.
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Figure 1.8: Step response for the state feedback controller observer system from a Simulink simulation
with accelerometer noise.
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1.5 Implementation: Dither/Noise Problem

The controller seemed to perform fairly well in simulation and it seemed the time had come to implement it
experimentally. The real world was not as kind. Enabling accelerometer feedback with this controller resulted in
the valve oscillating back and forth at a fairly high frequency. While I could hear the valve moving, the arm just
started to drift. I recreated this response by sending a dither signal to the valve.

Figure 1.9 shows the effect onθ2 of switching on the state-space controller and then switching on acceleration
feedback. (When acceleration feedback is turned off, a constant value of 0 is used to replace the measured acceler-
ation value). The state-space controller can be switched on without much problem. However, when accelerometer
feedback is switched on, noise sensitivity causes a serious problem. Note that I am able to recreate the drifting
of the joint angle by sending a 200Hz voltage to joint 2. Simply setting the voltage to a 0 volt DC value does not
cause the drift. Figure 1.12 shows that the DC value of the input voltage when the acceleration feedback has been
switched on is approximately zero, but the voltage is switching fairly rapidly from the positive to the negative
saturation limit. This seems to indicate that the joint is being dithered by the input voltage.

Figure 1.10 shows the effect ona2 of switching on the state-space controller and then switching on acceleration
feedback.

Figure 1.11 shows the effect onv2 of switching on the state-space controller and then switching on acceleration
feedback.
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Figure 1.9: The effect onθ2 of switching on the state-space controller and then switching on acceleration
feedback.
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Figure 1.10: The effect ona2 of switching on the state-space controller and then switching on acceleration
feedback.
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Figure 1.11: The effect onv2 of switching on the state-space controller and then switching on acceleration
feedback.
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Figure 1.12: Zooming in on Figure 1.11.

19



CHAPTER 1. THREE MODE POLE PLACEMENT CONTROLLER April 30, 2004

10
0

10
1

10
2

−50

0

50

100

M
ag

 R
at

io
 (d

B
)

10
0

10
1

10
2

−200

−100

0

100

200

P
ha

se
 (d

eg
)

Freq (Hz)

Figure 1.13: Bode plot of the voltage sent to the joint 2 actuator.
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A.1 Matlab Files Used

A.1.1 Main Matlab File

The main Matlab file isdigital_design_01_09_04.m This file designs a digital pole placement con-
troller/observer to place the first three poles of SAMII. The pole placement is done by leaving the magnitude of
the pole (the undamped natural frequency) unchanged, but changing the damping ratio to a specified value.

This function callsloadparams_ss_01_09_04_s4_m3 to define the state-space matrices A, B, C, and D
based on coefficents from curve fitting bode data.

This function outputs a text file that can be cut and pasted into a intialization block of a masked subsystem in
Simulink for easy implementation of this controller in simulation or experimentally using real-time workshop.

A.1.2 Additional Matlab Files

ccfaccel3modes.m

This file starts with the transfer functions for the hydraulic actuator and base acceleration including the first
three modes of the flexible base. From there it derives a controllable canonical state space representation of
the system. This file outputs the results of its derivation to a LaTeX file for easy readability. The output file is
ccfaccel3modes.tex .

The transfer functions used in this derivation include ans4 term in the numerators of the transfer functions
between the base accleration and the theta input (angular position) (i.e.ẍ/θ).

It also creates a Matlab m-file that defines the state space matrices in terms of the variables used in this deriva-
tion. Editting this file so that it begins with numerically defining each of these variables (i.e. w1=2*pi*10), gives
an m-file that has the properly defined state space representation of the system. The output m-file generated by
this file isccfaccelwnums3modes.m and the editted version isccfaccelwnums3modes_editted.m
which actually evalutes the lines of the filesbodefit_11_14_03_pw=0_1.txt where the parameters are all
defined.

ccfaccelwnums3modes.m

This file was created by the m-fileccfaccel3modes.m and it contains a CCF state-space model for SAMII
based on SISO transfer functions about a nominal operating point. To make this function useful, it must be editted
so that the coefficents it uses are numerically defined before they are used.

ccfaccelwnums3modes editted.m

This appears to be one of two main files in this directory, the other beingdigital_design_01_09_04.m .
This file loads curve fit parameters and then defines the state-space model based on those parameters. It calls
compbodeplots_01_09_04.m to compare bode plots from transfer function and state-space models with
one another and with experimental data.

The parameters used by this file are stored in the filebodefit_11_14_03_pw=0_1.txt .
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clpolelocs.m

A=varargin{1};
B=varargin{2};
C=varargin{3};
deszeta=varargin{4};

varargout{1}=eigcl;

This function finds the desired closed loop poles of a state feedback controller for SAMII by first finding the
poles with unity theta feedback and then moving any complex poles to the same natural frequency but with the
specified damping ratio.

compbodeplots 01 09 04.m

This file generates the bode plots from transfer function and state-space models of the system. This file is called
by ccfaccelwnums3modes_editted.m . This function callssamiimodel .

digital design 01 09 04.m

This file designs a digital pole placement controller/observer to place the first three poles of SAMII. The pole
placement is done by leaving the magnitude of the pole (the undamped natural frequency) unchanged, but chang-
ing the damping ratio to a specified value.

This function callsloadparams_ss_01_09_04_s4_m3 to define the state-space matrices A, B, C, and D
based on coefficents from curve fitting bode data.

This function outputs a text file that can be cut and pasted into a intialization block of a masked subsystem in
Simulink for easy implementation of this controller in simulation or experimentally using real-time workshop.

load data s4 m3 01 09 03.m

This file loads experimental swept and fixed sine data. The swept sine data is loaded into global variables. This
file is called byccfaccelwnums3modes_editted.m .

loadparams ss 01 09 04 s4 m3.m

This function loads system parameters from curve fit data and then defines state-space matrices based on those
parameters. It also defines a transfer function model based on the same parameters for comparison purposes. The
outputs of this function as A,B,C, and D matrices and transfer functions for the hydraulic actuators and flexible
base.

This function is very similar toccfaccelwnums3modes_editted.m except that it is implemented as a
function so that all of the parameters defined to create the matrices do not clutter up the workspace.

This function is called bydigital_design_01_09_04.m so that it will have a system model to design
the controller around.
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matrix ssobs.mat

samiimodel.m

This function is called bycompbodeplots_01_09_04.m . This function takes a vector of coeffiecients as an
input and outputs the bode magnitudes and phases for both the actuator and flexible base models.

coeffsin=varargin{1};

varargout{1}=act fit mag;
varargout{2}=basefit mag;
varargout{3}=act fit ph;
varargout{4}=basefit ph;

sim w obs R13 1 sat fixed 011504.mdl

ssbodedata.m

This function generates bode plot data for a state-space model.

A.1.3 Verbatim Matlab Files

ssJan04_fullstory_verb_apndx.pdf
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Chapter 2

Encoder Trouble Shooting

SAMII’s joint 2 encoder has intermittently seemed to
read incorrectly. The most obvious sign of this problem
has been sending joint 2 to 0◦ and having the arm be
visibly 5-10◦ above horizontal.

In an attempt to determine whether this is a hardware
or software problem (i.e. is the encoder not sending
Quanser the correct electrical signals, or is some prob-
lem with the real-time kernel causing Quanser to miss
some counts of the encoder), I hooked the encoder up to
an oscilloscope. The oscilloscope data was then saved
to an ascii file over an ethernet connection and the data
was analyzed in Matlab.

2.1 Verification of Oscilloscope
Measurement

This document compares the encoder measurement of
the Quanser/Wincon software with that from an oscil-
loscope (the oscilloscope measurement was processed
using Matlab code to convert it to degrees from the two
digital signals). During this testing, the Quanser read-
ing appeared to be correct, i.e. with joint 2 reading0◦

the link appeared to be truly horizontal.
The idea behind doing this was to have a way to ex-

ternally verify the encoder reading. If the reading in
Quanser appears to be off, the oscilloscope and the Mat-
lab data processing can be used to verify whether or not
the encoder signals that are reaching the Quanser board
is correct. If the oscilloscope data shows that the cor-
rect signals are reaching the board, then the problem is

in the software or the Quanser board. If he oscilloscope
and the Quanser reading are the same, but both seem
off compared to the actual physical configuration of the
joint, then the problem is in the hardware somewhere (a
loose wire or something).

Since the Quanser signal seemed to be reading cor-
rectly when this data was collected, this data only veri-
fies that the oscilloscope was able to sample fast enough
and didn’t miss any counts.

Figure 2.1 shows the joint responseθ2(t) when a
commanded step input is given to move the joint from
90◦ to 0◦. It takes SAMII a little over 1 second to
complete this motion. Figures 2.2-2.4 zoom in on vari-
ous portions of Figure 2.1, showing that the agreement
between Quanser and the oscilloscope reading is quite
good.

2.2 Problem Captured with Oscil-
loscope

Fortunately, I was able to capture this intermittent prob-
lem with the oscilloscope before too long. Figures 2.5-
2.16 show data from tests when the encoder reading ap-
peared to be a problem.

One way that the problem manifested itself was an
apparent flat spot in the graph of angle versus time un-
der a constant voltage input to the valve (Figure 2.5,
for example). A constant voltage should give a constant
velocity, so that this graph should be a straight line. Fig-
ures 2.5, 2.9, and 2.13 all show a glitch around 35◦. The
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Figure 2.1: Verifying the Quanser encoder reading
for joint 2 using an oscilloscope.
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Figure 2.2: Verifying the Quanser encoder reading
for joint 2 using an oscilloscope. (Zooming in on the
beginning of Figure 2.1).
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Figure 2.3: Verifying the Quanser encoder reading
for joint 2 using an oscilloscope. (Zooming in on the
middle of Figure 2.1).
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Figure 2.4: Verifying the Quanser encoder reading
for joint 2 using an oscilloscope. (Zooming in on the
end of Figure 2.1).
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repeatability of this error seems to indicate that it is a
hardware rather than a software problem.
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2.2.1 Test 1

Figure 2.5 shows the angle vs. time response for the
first test preformed on 01/28/02. The angle is calculated
based on encoder signals captured directly by the oscil-
loscope. The response should be essentially a straight
line. There is a flat spot in this line around 35◦. Figure
2.6 zooms in on the portion of Figure 2.5 with the flat
spot.

Figure 2.7 shows the digital encoder signals for the
same time as in Figure 2.5. The flat spot is where there
appears to be a blank spot in Figure 2.7 around 0.7 sec-
onds. Figure 2.8 zooms in on this blank portion of Fig-
ure 2.7. Figure 2.8 would seem to indicate that the arm
just stop moving for a few hundredths of a second. This
did not appear to be the case watching the movement
(it appears to move with constant velocity to the naked
eye). But, I don’t know if I would be able to see such a
glitch without the aid of high speed video. Fortunately,
the results in sections 2.2.2 and 2.2.3 are more conclu-
sive.
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Figure 2.5: Encoder readings with trouble-shooting
wire connected directly to the encoder. Test #1. Sam-
pling frequency of 5kHz. The +5V is externally sup-
plied and the encoder is not connected to Quanser at
all.
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Figure 2.6: Encoder readings with trouble-shooting
wire connected directly to the encoder. Test #1 .
(Zooming in on Figure 2.5.)
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Figure 2.7: Encoder signals after software process-
ing for noise. Test #1. Sampling frequency of 5kHz.
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Figure 2.8: Encoder signals after software process-
ing for noise. Test #1. (Zooming in on Figure 2.7.)
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2.2.2 Test 2

Figure 2.9 shows the angle vs. time response for the
second test preformed on 01/28/02. Just as in test 1,
there is a flat spot in this line around 35◦. Figure 2.10
zooms in on the portion of Figure 2.9 with the flat spot.

Figure 2.11 shows the digital encoder signals for the
same time as in Figure 2.10. Around 0.37 seconds the
encoder seems to do something strange, similar to what
was seen in Figure 2.7. Figure 2.12 zooms in on this
portion of Figure 2.11.

There is one key difference between Figure 2.12 and
what was seen before in Figure 2.8. Instead of both en-
coder channels stopping for a short time (as in Figure
2.8), channel B reads several counts while channel A
holds constant. The only way that this could actually re-
flect the true motion of system is if the arm where to vi-
brate back and forth through 1 count, so that only chan-
nel B was triggered. The encoder resolution is roughly
0.0439◦ (8192 counts per revolution or 360/8192◦). It
seems highly unlikely that this oscillation in joint 2 an-
gle actually happened. This would seem to indicate that
something is wrong with the sensor.

The results from Test 4 (section 2.2.3), seem to show
slightly more clearly that this is in fact a sensor issue.
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Figure 2.9: Encoder readings with trouble-shooting
wire connected directly to the encoder. Test #2. Sam-
pling frequency of 5kHz. The +5V is externally sup-
plied and the encoder is not connected to Quanser at
all.
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Figure 2.10: Encoder readings with trouble-shooting
wire connected directly to the encoder. Test #2 .
(Zooming in on Figure 2.9.)
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Figure 2.11: Encoder signals after software process-
ing for noise. Test #2. Sampling frequency of 5kHz.
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Figure 2.12: Encoder signals after software process-
ing for noise. Test #2. (Zooming in on Figure 2.11.)
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2.2.3 Test 4

Figure 2.13 shows the angle vs. time response for the
fourth test preformed on 01/28/02. Just as in tests 1 and
2, there is a flat spot in this line around 35◦. Figure 2.14
zooms in on the portion of Figure 2.13 with the flat spot.

Figure 2.15 shows the digital encoder signals for the
same time as in Figure 2.14. Figure 2.16 zooms in on
the portion of Figure 2.15 where there is a flat spot it
Figure 2.14.

Figure 2.16 seems to indicate that there is a sensor
problem slightly more definitively than Figure 2.12 did.
In Figure 2.16, channel B appears to continue reading as
if the arm is moving with constant velocity while chan-
nel A appears to stop. This reinforces the constant ve-
locity motion that would be expected and seems verified
by the naked eye observation of the motion. It appears
that something was wrong with channel A during this
portion of this test. Perhaps the encoder lines for chan-
nel A are damaged or dirty in the portion of the encoder
wheel around 35◦ for joint 2.
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Figure 2.13: Encoder readings with trouble-shooting
wire connected directly to the encoder. Test #4. Sam-
pling frequency of 10kHz. The +5V is externally sup-
plied and the encoder is not connected to Quanser at
all.
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Figure 2.14: Encoder readings with trouble-shooting
wire connected directly to the encoder. Test #4 .
(Zooming in on Figure 2.13.)
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Figure 2.15: Encoder signals after software process-
ing for noise. Test #4. Sampling frequency of 10kHz.
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Figure 2.16: Encoder signals after software process-
ing for noise. Test #4. (Zooming in on Figure 2.15.)

2.3 Conclusion and Encoder
Cleaning

Based on the results of these tests, it was concluded that
there is something wrong with the encoder (this is not a
software nor does it appear to be a wiring problem - a
loose wire would not be this consistent).

As a first attempt to solving this problem, the en-
coder was taken apart and the wheel was cleaned. The
problem has not reoccurred since the encoder wheel has
been cleaned. Unless the problem begins to reoccur, I
will assume that the problem has been solved.
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A.1 Matlab Files Used

A.1.1 Main Matlab File

The main Matlab file isprocess_encoder_data_
01_28_04.m This file processes the encoder data
from testing done on 01/28/02. The encoder signals are
first cleaned up. Anything below 1 volt is set to zero
and anything above 3 volts is set to 5. The two chan-
nels of the encoder are then processed to determine the
angle vs. time signal. The angle versus time as well
as encoder signals versus time are plotted. Based on a
vector of x-axis limits determined manually, plots are
generated that zoom in on the relevant portions of the
curves. Encoder data was not recorded with the Quanser
software for these tests becuase previous testing had al-
ready showed good agreement between Quanser and the
oscilloscope mesaurements.

A.1.2 Additional Matlab Files

process encoder data 01 23 04.m

This file processes the encoder data from testing done
on 01/24/02. The encoder signals are first cleaned up.
Anything below 1 volt is set to zero and anything above
3 volts is set to 5. The two channels of the encoder
are then processed to determine the angle vs. time sig-
nal. The angle versus time is plotted. The results of
this processing algorithm are overlayed with the angle
recorded using the Quanser software. The agreement is
quite good, showing that this algorithm can be trusted
and that the oscilloscope is sampling fast engouh that
counts are not being missed.

A.1.3 Verbatim Matlab Files

encoder_troubleshoot_fullstory.pdf
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Chapter 3

Transfer Matrix Analysis

3.1 Transfer Matrix Derivation for a Beam Element

The shear force can be written as

V = A1 cosh

(
β x

l

)
+ A2 sinh

(
β x

l

)
+ A3 cos

(
β x

l

)
+ A4 sin

(
β x

l

)
(3.1)

The shear force is related to the displacement according to

dV

dx
= −µω2w (3.2)

This can be rearranged to give

w =
−1

µω2

dV

dx
(3.3)

β is defined to be

β4 =
ω2l4µ

EI
(3.4)

Solving equation 3.4 forµω2 and substituting the result in equation 3.3 gives the following equation:

w =
−l4

β4EI

dV

dx
(3.5)

Differentiating equation 3.1 and substituting the result into equation 3.5 gives

w = −l3
(
A1 sinh

(
β x

l

)
+ A2 cosh

(
β x

l

)
− A3 sin

(
β x

l

)
+ A4 cos

(
β x

l

))
β−3EI−1 (3.6)

By definition,

ψ = −dw
dx

(3.7)
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Differentiating equation 3.6 gives

ψ = l2
(
A1 cosh

(
β x

l

)
+ A2 sinh

(
β x

l

)
− A3 cos

(
β x

l

)
− A4 sin

(
β x

l

))
β−2EI−1 (3.8)

By definition,

M = EI
dψ

dx
(3.9)

Differentiating equation 3.8 gives

M = l

(
A1 sinh

(
β x

l

)
+ A2 cosh

(
β x

l

)
+ A3 sin

(
β x

l

)
− A4 cos

(
β x

l

))
β−1 (3.10)

Equations 3.1, 3.6, 3.8, and 3.10 can be rewritten in matrix form as

z(x) = B(x)a (3.11)

where

z =


−w
ψ
M
V

 (3.12)

a =


A1

A2

A3

A4

 (3.13)

B =



al sinh
(

β x
l

)
β−3 al cosh

(
β x
l

)
β−3 −al sin

(
β x
l

)
β−3 al cos

(
β x
l

)
β−3

a cosh
(

β x
l

)
β−2 a sinh

(
β x
l

)
β−2 −a cos

(
β x
l

)
β−2 −a sin

(
β x
l

)
β−2

l sinh
(

β x
l

)
β−1 l cosh

(
β x
l

)
β−1 l sin

(
β x
l

)
β−1 −l cos

(
β x
l

)
β−1

cosh
(

β x
l

)
sinh

(
β x
l

)
cos

(
β x
l

)
sin

(
β x
l

)


(3.14)

and

a =
l2

EI
(3.15)

Evaluating equation 3.11 at each end of the beam gives

z(0) = B(0)a (3.16)

and
z(L) = B(L)a (3.17)

Solving equation 3.16 fora gives
a = [B(0)]−1 z(0) (3.18)

35



CHAPTER 3. TRANSFER MATRIX ANALYSIS March 3, 2004

Substituting equation 3.18 into equation 3.17 gives

z(L) = B(L) [B(0)]−1 z(0) (3.19)

The transfer matrix betweenz(0) andz(L) can then be written as

UL0 = B(L) [B(0)]−1 (3.20)

B(0) is given by

B(0) =



0 al
β3 0 al

β3

a
β2 0 − a

β2 0

0 l
β

0 − l
β

1 0 1 0

 (3.21)

andB(L) is given by

B(L) =



al sinh(β)
β3

al cosh(β)
β3 −al sin(β)

β3
al cos(β)

β3

a cosh(β)
β2

a sinh(β)
β2 −a cos(β)

β2 −a sin(β)
β2

l sinh(β)
β

l cosh(β)
β

l sin(β)
β

− l cos(β)
β

cosh (β) sinh (β) cos (β) sin (β)


(3.22)

Substituing equations 3.21 and 3.22 into equation 3.20 gives

UL0 =



1/2 cosh (β) + 1/2 cos (β) 1/2 l(sinh(β)+sin(β))
β

1/2 β (sinh(β)−sin(β))
l

1/2 cosh (β) + 1/2 cos (β)

1/2 β2(cosh(β)−cos(β))
a

1/2 β l(sinh(β)−sin(β))
a

1/2 β3(sinh(β)+sin(β))
al

1/2 β2(cosh(β)−cos(β))
a

1/2 a(cosh(β)−cos(β))
β2 1/2 al(sinh(β)−sin(β))

β3

1/2 a(sinh(β)+sin(β))
β l

1/2 a(cosh(β)−cos(β))
β2

1/2 cosh (β) + 1/2 cos (β) 1/2 l(sinh(β)+sin(β))
β

1/2 β (sinh(β)−sin(β))
l

1/2 cosh (β) + 1/2 cos (β)


(3.23)

Rewriting the transfer matrix in terms of subexperssions gives

UL0 =



c (1) 1/2 lc(4)
β

1/2 ac(3)
β2 1/2 alc(2)

β3

1/2 β c(2)
l

c (1) 1/2 ac(4)
β l

1/2 ac(3)
β2

1/2 β2c(3)
a

1/2 β lc(2)
a

c (1) 1/2 lc(4)
β

1/2 β3c(4)
al

1/2 β2c(3)
a

1/2 β c(2)
l

c (1)


(3.24)
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where

c =


1/2 cosh (β) + 1/2 cos (β)

sinh (β) − sin (β)

cosh (β) − cos (β)

sinh (β) + sin (β)

 (3.25)

Alternatively, the transfer matrix betweenz(L) andz(0) can then be written as (reversing the order of multilpli-
cation)

U0L = B(0) [B(L)]−1 (3.26)

which can be written as

U0L =



1/2 cosh (β) + 1/2 cos (β) −1/2 l(sinh(β)+sin(β))
β

1/2 β (− sinh(β)+sin(β))
l

1/2 cosh (β) + 1/2 cos (β)

1/2 β2(cosh(β)−cos(β))
a

1/2 β l(− sinh(β)+sin(β))
a

−1/2 β3(sinh(β)+sin(β))
al

1/2 β2(cosh(β)−cos(β))
a

1/2 a(cosh(β)−cos(β))
β2 1/2 al(− sinh(β)+sin(β))

β3

−1/2 a(sinh(β)+sin(β))
β l

1/2 a(cosh(β)−cos(β))
β2

1/2 cosh (β) + 1/2 cos (β) −1/2 l(sinh(β)+sin(β))
β

1/2 β (− sinh(β)+sin(β))
l

1/2 cosh (β) + 1/2 cos (β)


(3.27)

which can be rewritten in terms of subexperssions to give

U0L =



c0L (1) −1/2 lc0L(4)
β

1/2 ac0L(3)
β2 1/2 alc0L(2)

β3

1/2 β c0L(2)
l

c0L (1) −1/2 ac0L(4)
β l

1/2 ac0L(3)
β2

1/2 β2c0L(3)
a

1/2 β lc0L(2)
a

c0L (1) −1/2 lc0L(4)
β

−1/2 β3c0L(4)
al

1/2 β2c0L(3)
a

1/2 β c0L(2)
l

c0L (1)


(3.28)

where

c0L =


1/2 cosh (β) + 1/2 cos (β)

− sinh (β) + sin (β)

cosh (β) − cos (β)

sinh (β) + sin (β)

 (3.29)
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UsingB(0) andz(0) to determine the coefficentsa gives

a0 =



1/2V0

1/2 β M0
l

1/2V0

−1/2 β M0
l

 (3.30)

3.1.1 Cantilevered Beam

To illustrate the difference betweenU0L andUL0, consider the response of a cantilevered beam. The boundary
conditions for a cantilevered beam are given by

z0 =


0

0

M0

V0

 (3.31)

and

zL =


−wL

ψL

0

0

 (3.32)

In order for the equationz(0) = Uz(L) to hold for all values ofw(L) andψ(L) the submatrix

U(1:2,1:2) =

 1/2 cosh (β) + 1/2 cos (β) −1/2 l(sinh(β)+sin(β))
β

1/2 β (− sinh(β)+sin(β))
l

1/2 cosh (β) + 1/2 cos (β)

 (3.33)

must have zero determinant. This determinant can be written as

|U(1:2,1:2)| = 1/2 cosh (β) cos (β) + 1/2 (3.34)

Setting this determinant equal to zero gives a transcendental equation that can be solved forβ. For the first mode
of a cantilevered beam,

β = 1.8751 (3.35)

Substituing this value forβ into equation 3.25, gives

c =


1.5189
2.23

−3.637
4.1381

 (3.36)
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+x

+z

+w
ψ (<0)

Figure 3.1: The first mode of a cantilevered beam with the sign conventions used for this derivation.

Substituing this value forβ into theU0L andUL0 matrices gives

U0L =


1.5189 −1.1034 l 0.51721 a −0.16912 al

−2.0907 l−1 1.5189 −1.1034 a
l

0.51721 a

6.3939 a−1 −2.0907 l
a

1.5189 −1.1034 l

−13.641 1
al

6.3939 a−1 −2.0907 l−1 1.5189

 (3.37)

and

UL0 =


1.5189 1.1034 l 0.51721 a 0.16912 al

2.0907 l−1 1.5189 1.1034 a
l

0.51721 a

6.3939 a−1 2.0907 l
a

1.5189 1.1034 l

13.641 1
al

6.3939 a−1 2.0907 l−1 1.5189

 (3.38)

The first row of the matrix equationz(0) = U0Lz(L) is

− 1.5189wL − 1.1034 lψL = 0 (3.39)

While the first row of the matrix equationz(0) = UL0z(L) (note that this is using the incorrectU) is

− 1.5189wL + 1.1034 lψL = 0 (3.40)

Figure 3.1 shows the sign convention for this derivation and how it applies to the first mode of a cantilevered
beam. ψ is measured from horizontal with counter-clockwise being positive.w is positive in the downward
direction. Positivew will produce negativeψ. This is what is found in equation 3.39, but the opposite of what is
predicted with equation 3.40.
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wi wi+1ψ (<0)

Figure 3.2: Sketch of the rigid body being analyzed in this section.

B.0.2 Matlab File Used

Matlab File Summary

This file uses the Matlab fileBmatrix_deriv.m This file derives the transfer matrix for a beam element based
on the solution of the differential equation as in Chapter 5 of Pestel.

The B transfer matrix is derived for transfering the state vector from left to right or from right to left: i.e.
zR = URLzL or zL = ULRzR.

Verbatim Matlab Text

Bmatrix_deriv_editted_verb_apndx.pdf

3.1 Rigid Mass Transfer Matrix Derivation

3.1.1 Ri,i+1

If w is positive downward andψ is positive in the counter-clockwise direction, then from Figure 3.2 it can be
shown that

wi+1 = wi − ψ l (3.41)

To derive the matrixRi,i+1 that transfers from stationi + 1 to stationi (i.e. z0 = R01z1), equation 3.41 must be
solved forwi:

wi = wi+1 + ψ l (3.42)

40



CHAPTER 3. TRANSFER MATRIX ANALYSIS April 16, 2004

This equation gives the first row of theRi,i+1 matrix

Ri,i+1(1, :) =
[

1 −l 0 0
]

(3.43)

Note that−w is used in the state vector so that the first row of theRi,i+1 matrix represents the equation

− wi = Ri,i+1(1, :)


−wi+1

ψi+1

Mi+1

Vi+1

 (3.44)

Because the link is rigid, the value ofψ does not change from one end to the other, so that the second row of the
matrix is

Ri,i+1(2, :) =
[

0 1 0 0
]

(3.45)

The sum of the moments about any point on a rigid body is given by∑
MA = mrg/A × aA + ˙̄HA (3.46)

To derive the matrixRi,i+1 that transfers from stationi+1 to stationi, the moments must be summed about point
i (to avoid introducingVi into the equation). For this case, pointA in equation 3.46 is replaced by pointi, the left
end of the rectangle in Figure 3.2. This choice of pointA givesrg/A = −hi andaA = ẅik so that equation 3.46
can be written as

Mi+1 −Mi − Vi+1 l = mhẅi + ˙̄HA (3.47)

For the planar motion case being considered,
˙̄HA = Ii α (3.48)

where
Ii = Icg +mh2 (3.49)

and
α = −ω2ψ (3.50)

Substituing these results into equation 3.47 gives

Mi+1 −Mi − Vi+1 l = mhẅi −
(
Icg +mh2

)
ω2ψ (3.51)

In order to solve forMi in terms of only quantities at stationi+ 1, ẅi must be rewritten as

ẅi = −ω2 (wi+1 + ψ l) (3.52)

Substituting this experssion into equation 3.51 and solving forMi gives

Mi =
(
mlh+ Icg +mh2

)
ω2ψ +mhwi+1 ω

2 − Vi+1 l +Mi+1 (3.53)

This equation gives the third row of theRi,i+1 matrix

Ri,i+1(3, :) =
[
−mω2h (mlh+ Icg +mh2)ω2 1 −l

]
(3.54)
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Summing forces for the link gives
Vi+1 − Vi = macg (3.55)

In order to solve forVi in terms of only quantities at stationi+ 1, acg must be rewritten as

acg = ẅi+1 + (l − h) ψ̈ (3.56)

or
acg = −ω2wi+1 − (l − h)ω2ψ (3.57)

Substituting equation 3.57 into equation 3.55 and solving forVi gives

Vi = mω2wi+1 +m (l − h)ω2ψ + Vi+1 (3.58)

This equation gives the fourth row of theRi,i+1 matrix

Ri,i+1(4, :) =
[
−mω2 m (l − h)ω2 0 1

]
(3.59)

The entireRi,i+1 matrix can now be written as

Ri,i+1 =


1 −l 0 0

0 1 0 0

−mhω2 (mhl + Icg +mh2)ω2 1 −l

−mω2 m (l − h)ω2 0 1

 (3.60)

3.1.2 Ri+1,i

To derive the matrixRi+1,i that transfers from stationi to stationi + 1 (i.e. z1 = R10z0), equation 3.41 can be
used directly to get the first row of the matrix

Ri,i+1(1, :) =
[

1 l 0 0
]

(3.61)

Because the link is rigid, the value ofψ does not change from one end to the other, so that the second row of the
matrix is

Ri+1,1(2, :) =
[

0 1 0 0
]

(3.62)

If the matrixRi+1,i (that transfers from stationi to stationi + 1) is sought, the moments must be summed about
pointi+1 (to avoid introducingVi+1 into the equation). For this case, pointA in equation 3.46 is replaced by point
i + 1, the right end of the rectangle in Figure 3.2. This choice of pointA givesrg/A = (l − h)i andaA = ẅi+1k
so that equation 3.46 can be written as

Mi+1 −Mi − Vi l = −m (l − h) ẅi+1 + ˙̄HA (3.63)

For this case,
˙̄HA = Ii+1 α (3.64)
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Iip1sub
Ii+1 = Icg +m (l − h)2 (3.65)

and (as in the previous case)
α = −ω2ψ (3.66)

Substituing these results into equation 3.63 gives

Mi+1 −Mi − Vi l = −m (l − h) ẅi+1 −
(
Icg +m (l − h)2

)
ω2ψ (3.67)

In order to solve forMi+1 in terms of only quantities at stationi, ẅi+1 must be rewritten as

ẅi+1 = −ω2 (wi − ψ l) (3.68)

Substituting this experssion into equation 3.67 and solving forMi+1 gives

Mi+1 =
(
−m (l − h) l − Icg −m (l − h)2

)
ω2ψ +m (l − h)wi ω

2 + Vi l +Mi (3.69)

This equation gives the third row of theRi+1,i matrix

Ri+1,i(3, :) =
[
−m (l − h)ω2

(
−m (l − h) l − Icg −m (l − h)2

)
ω2 1 l

]
(3.70)

In order to solve forVi+1 in terms of only quantities at stationi, acg must be rewritten as

acg = ẅi − hψ̈ (3.71)

or
acg = −ω2wi + ω2ψ h (3.72)

Substituting equation 3.72 into equation 3.55 and solving forVi+1 gives

Vi+1 = m
(
−ω2wi + ω2ψ h

)
+ Vi (3.73)

This equation gives the fourth row of theRi+1,i matrix

Ri+1,i(4, :) =
[
mω2 mhω2 0 1

]
(3.74)

The entireRi+1,i matrix can now be written as

Ri+1,i =



1 l 0 0

0 1 0 0

−m (l − h)ω2
(
−m (l − h) l − Icg −m (l − h)2

)
ω2 1 l

mω2 mhω2 0 1

 (3.75)
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Figure 3.3: Sketch of the rigid body being analyzed in this section.

C.0.3 Matlab File Used

Matlab File Summary

This file uses the Matlab fileRmatrix_deriv.m This file contains my first derivation of the transfer matrix for
a rigid mass. I had some questions about the rigid mass transfer matrix as it is given in Dr. Book’s thesis.

I later re-did this derivation with a different convention for h (the distance to the center of mass). This later
derivation was done to compare results with Dr. Book’s lab notebook. The later derivation is done inRmatrix_
deriv_DrBook_notes.m which generates the fileRmatrix_deriv_wjb_notes.tex . It is this later
derivation that is used in the remainder of my analysis and in the utility functionrigidmasstm.m .

Verbatim Matlab Text

Rmatrix_deriv_verb_apndx.pdf

3.1 Rigid Mass Transfer Matrix (WJB notes)

3.1.1 RRL

This is an attempt to recreate theRRL matrix (i.e. a transfer matrix for a rigid body that transfers from a state
vector on the left-hand side to a state vector on the right-hand side:zR = RRLzL) that Dr. Book derived in his
notebook (not exactly what is in his thesis).
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If w is positive downward andψ is positive in the counter-clockwise direction, then from Figure 3.3 it can be
shown that

wR = wL − ψ l (3.76)

The state vector is given by

z =


−w
ψ
M
V

 (3.77)

Because the state vector uses−w, equation 3.76 should be multiplied by -1:

− wR = −wL + ψ l (3.78)

This equation gives the first row of theRRL matrix

RRL(1, :) =
[

1 l 0 0
]

(3.79)

Because the link is rigid, the value ofψ does not change from one end to the other, so that the second row of the
matrix is

RRL(2, :) =
[

0 1 0 0
]

(3.80)

Summing forces gives
macg = VR − VL (3.81)

where
acg = ẅL − ψ̈ (l − h) (3.82)

or
acg = −ω2wL + ω2ψ (l − h) (3.83)

Substituing equations 3.83 into equation 3.81 and solving forVR gives

VR = m
(
−ω2wL + ω2ψ (l − h)

)
+ VL (3.84)

This equation gives the fourth row of theRRL matrix

RRL(4, :) =
[
mω2 mω2 (l − h) 0 1

]
(3.85)

Summing moments about the center of gravity gives

Iψ̈ = MR −ML − VL (l − h) − VR h (3.86)

Substituing forVR from equation 3.84 and replacing̈ψ with −ω2ψ gives

− Iω2ψ = MR −ML − VL (l − h) −
(
m
(
−ω2wL + ω2ψ (l − h)

)
+ VL

)
h (3.87)

Solving equation 3.87 forMR gives

MR =
((
hl − h2

)
ω2m− Iω2

)
ψ − hmω2wL +ML + VL l (3.88)
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This equation gives the third row of theRRL matrix

RRL(3, :) =
[
hmω2 (hl − h2)ω2m− Iω2 1 l

]
(3.89)

The entireRRL matrix can now be written as

RRL =


1 l 0 0

0 1 0 0

hmω2 (hl − h2)ω2m− Iω2 1 l

mω2 mω2 (l − h) 0 1

 (3.90)

TheRRL matrix is used to calculatezR = RRLzL or


−w
ψ
M
V


R

=


1 l 0 0

0 1 0 0

hmω2 (hl − h2)ω2m− Iω2 1 l

mω2 mω2 (l − h) 0 1



−w
ψ
M
V


L

(3.91)

Alternatively, theRLR matrix is given by[RRL]−1

RLR =


1 −l 0 0

0 1 0 0

mω2 (l − h) (−hl + h2)ω2m+ Iω2 1 −l

−mω2 hmω2 0 1

 (3.92)

and theRLR matrix can be used to calculatezL = RLRzR or


−w
ψ
M
V


L

=


1 −l 0 0

0 1 0 0

mω2 (l − h) (−hl + h2)ω2m+ Iω2 1 −l

−mω2 hmω2 0 1



−w
ψ
M
V


R

(3.93)

Testing the output of myrigidmasstm.m function,

RRL =


1 l 0 0

0 1 0 0

hmω2 (hl − h2)ω2m− Iω2 1 l

mω2 mω2 (l − h) 0 1

 (3.94)
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Testing the augmented output of myrigidmasstm.m function (the augmented form is used to find the forced
system response),

RRLA =



1 l 0 0 0

0 1 0 0 0

hmω2 (hl − h2)ω2m− Iω2 1 l 0

mω2 mω2 (l − h) 0 1 0

0 0 0 0 1


(3.95)
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D.0.2 Matlab File Used

Matlab File Summary

This file uses the Matlab fileRmatrix_deriv_DrBook_notes.m This function documents the derivation of
the rigid mass transfer matrix that I use in my analysis. I had some questions concerning the rigid mass transfer
matrix that Dr. Book gives in his thesis and in a chapter of a book he is writing on flexible robotics. I believe that
the derivation included in this file is correct and it is the one I am moving forward with. It agrees fairly closely,
but not completely, with the derivation in Dr. Book’s lab manual. There are some significant differences between
this derivation and the results in Dr. Book’s thesis.

This derivation is the basis of the transfer matrix utility functionrigidmasstm.m which is in therwk_
matlab_functions directory.

Verbatim Matlab Text

Rmatrix_deriv_wjb_notes_verb_apndx.pdf

3.1 Free Cantilever Analysis

3.1.1 Natural Frequency Comparison

Results from the tranfer matrix method:
f1 = 6.302 Hz (3.96)

f2 = 39.494 Hz (3.97)

Comparison with exact solution: The exact solution comes from solving

cos β cosh β = −1 (3.98)

Using the natural frequencies from the transfer matrix to evaluate this expression gave

cos β cosh β = −1.0000000000 (3.99)

cos β cosh β = −1.0000000000 (3.100)

3.1.2 Mode Shape Comparison

Figure 3.4 overlays the first mode shape from the transfer matrix with the exact solution. Figure 3.5 overlays the
second mode shape from the transfer matrix with the exact solution. The agreement for both mode shapes is good.
This gives a high degree of confidence that the transfer matrix method for a cantilever beam has been correctly
implemented in Matlab.
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Figure 3.4: Comparison of the first mode shape from the transfer matrix method and the exact solution for
a free cantilever.
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Figure 3.5: Comparison of the second mode shape from the transfer matrix method and the exact solution
for a free cantilever.
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E.0.3 Matlab File Used

Matlab File Summary

This file uses the Matlab filefreecantilever_wnums.m To verify that my transfer matrix code is working
correctly, I compared results between the transfer matrix method and other methods as I went along. The first step
was to compare the results for a single cantilever beam element with the exact solution (from Meirovitch). That is
what this file does. Natural frequencies and mode shapes are compared between the transfer matrix method and
the exact solution (since the transfer matrix is and exact solution, this is just a verifcation of the code and that I
am correctly implementing the method).

Verbatim Matlab Text

freecantilever_wnums_verb_apndx.pdf

3.1 Cantilever with Point End Mass Analysis

3.1.1 Natural Frequency Comparison

Results from the tranfer matrix method:
f1 = 2.5754 Hz (3.101)

f2 = 28.888 Hz (3.102)

Results from the assumed modes method:
f1 = 2.5754 Hz (3.103)

f2 = 28.888 Hz (3.104)

3.1.2 Mode Shape Comparison

Figure 3.6 overlays the first mode shape from the transfer matrix method and the assumed modes method. Figure
3.7 overlays the second mode shape from the transfer matrix method and the assumed modes method. The
agreement for both mode shapes is good. This gives a high degree of confidence that the transfer matrix method
for a cantilever beam has been correctly implemented in Matlab.

3.2 Cantilever with Real End Mass Analysis

3.2.1 Natural Frequency Comparison

Results from the tranfer matrix method:
f1 = 2.2386 Hz (3.105)

f2 = 19.346 Hz (3.106)
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Figure 3.6: Comparison of the first mode shape from the transfer matrix method and the assumed modes
method for a cantilever with a point mass on the end.
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Figure 3.7: Comparison of the second mode shape from the transfer matrix method and the assumed modes
method for a cantilever with a point mass on the end.
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Figure 3.8: Comparison of the first mode shape from the transfer matrix method and the assumed modes
method for a cantilever with a real mass on the end.

Results from the assumed modes method:
f1 = 2.4485 Hz (3.107)

f2 = 28.918 Hz (3.108)

3.2.2 Mode Shape Comparison

Figure 3.8 overlays the first mode shape from the transfer matrix method and the assumed modes method. Figure
3.9 overlays the second mode shape from the transfer matrix method and the assumed modes method. Note that
the rotational kinetic energ of the end mass was not included in the assumed modes method analysis.
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Figure 3.9: Comparison of the second mode shape from the transfer matrix method and the assumed modes
method for a cantilever with a point mass on the end.
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F.0.3 Matlab File Used

Matlab File Summary

This file uses the Matlab filecantileverwrealmass_wnums.m As a next step in complexity, this file uses
the transfer matrix method to find the natural frequencies and mode shapes of a cantilever beam with a real mass
on the end (i.e. one with non-zero length and second moment of ineteria). The results from the transfer matrix
method are compare to results from the assumed modes method.

Verbatim Matlab Text

cantirealmass_wnums_verb_apndx.pdf

56



Chapter 4

Transfer Matrix Utilities

A fair ammount of time this semester was spent developing Matlab code for straightforward implemenation of
the transfer matrix method for arbitrary systems. I hope these functions will be able to be used for some time into
the future and built upon by others. I tried to make them able to handle as general a tranfer matrix problem as
possible.
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G.1 Matlab Files Used

G.1.1 Main Matlab File

The main Matlab file istmsystem.m This function attempts to find the transfer matrix for an arbitrary system.
This function is intended to be called by fminsearch to find the natural frequencies. To accomplish this, the first
input is omega and the additional inputs are for discribing the system. The second input is a cell array of strings
containing the transfer matrices in the order they are to be multiplied together (i.e.{’B’,’R’,’B’,’B’,’R’ }). The
third input is a cell array of the parameters corresponding to each transfer matrix.

G.1.2 Additional Matlab Files

beammodeshape.m

This function determines the mode shape of a beam element by calling thebeamtm.m function for
varying lengths from x=xstep to L. Apparently, I forgot that I wrote this and wrote the new funciton
tmbeammodeshape.m to do basically the same thing.tmbeammodeshape.m is very similar but is newer
and should be used in stead of this one.

beamtm.m

This function returns the transfer matrix for a beam element. The inputs are the frequency, a cell array of system
parameters={L, E, I, mu}, and a cell array containing optoinal arguments. Right now{’aug=1’} is the only
supported optional argument, which when evaluted would specify that an augmented matrix should be returned
for use in determining the force response of dynamic systems.

forcetm.m

This function returns an augmented transfer matrix used as input point for external forcing on a dynamic sys-
tem. The output is an identity matrix augmented with a column of the forced values and a fifth row that is[

0 0 0 0 1
]
.

rigidmasstm.m

This function returns the transfer matrix for a beam element. The inputs are the frequency, a cell array of system
parameters={Lr, mr, Ir, h} (where h is the distance from the RIGHT or far side of mass to the center of gravity),
and a cell array containing optoinal arguments. Right now{’aug=1’} is the only supported optional argument,
which when evaluted would specify that an augmented matrix should be returned for use in determining the force
response of dynamic systems.

For a sketch of the rigid mass elements with the various parameters on it or to see a derivaiton of this matrix,
please refer toRmatrix_deriv_DrBook_notes.m andRmatrix_deriv_wjb_notes.tex

This matrix transfers from the left to the righthand side of a rigid mass,zL to zR according tozR = RzL as
in the derivation inRmatrix_deriv_DrBook_notes.m which outputs the fileRmatrix_deriv_wjb_
notes.tex
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tmbeammodeshape.m

This function calls the beamtm function with length varying from L/numx to the total length of the beam element
at numx increments. Based on zL, the boundary conditions at the left end of the beam, and the beam transfer
matrix calculated at the current length increment, the response at numx points along the length of the beam is
found.

beamparams needs to be in the same order as the sysparams argument of the beamtm.m function
(L=sysparams{1}; E=sysparams{2}; I=sysparams{3}; mu=sysparams{4};).

G.1.3 Verbatim Matlab Files

tmutilies_verb_apndx.pdf
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