Chapter 1

Three Mode Pole Placement Controller

1.1 Introduction

During the fall semester of 2003, | designed a pole placement controller to place the first two lightly dampe
modes of SAMII at pole locations with higher damping, but with the same natural frequencies. This first attemy
at a pole placement controller made the third mode unstable.

At the end of last semester, | curve fit a model that included the first three modes of the flexible base to the bo
data. This curve fitting was done to enable a pole placement controller design that placed the first three modes
the flexible base. Obviously, there will always be unmodeled modes in the system. It was my hope that placir
the third mode would place the unmodeled modes above the bandwidth of the hydraulic actuators.

This section details the design and implementation of the three mode pole placement controller/observer |
cluding a derivation of the state-space model from the transfer function model.

1.2 State-Space Model Derivation

A controllable canonical state-space model is derived from a transfer function representation of the system. T
results of this derivation are output to an m-file that implements this model numerically with the coefficients fron
curve fitting done last semester. This model is verified in seftidn 1.3 by overlaying bode plots generated with tt
state-space model with those generated with the transfer function model and from experimental data.

1.2.1 Transfer Function Manipulation

The transfer funciton fof /d can be written as

0 wi (554 20was +wy) T (1.1)
d  swp? (52 + 2Cqwas + wa?) (s +7) '
The transfer function foi: /6 can be written as
Gy s*B s*B s*B

0 2+ 2Ciwis +wi? 82 4+ 20Gwes + we? 82 + 2(3ws3Ss + w3?
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multiplying equatiof 12 by equatign 1.1 allows the numerator of the transfer function betyi¢émbe written

as

N, = (52 + 2(3ws3s + w32) (52 + 2Cowas + w22) strwstB,
(82 + 2(3ws3s + w32) (32 + 2CG w1 s + w12) s*rwy? By

+
+ (32 + 2(was + w22) (32 + 2Gwrs + w12) s*rwy?Bs (1.3)

The denominator of this transfer function can be written as

D = (52 + 2(3ws3s + w32) (52 + 2Gwis + w12) Swo? (52 + 2(qwqs + wd2) (s+ 1) (1.4)

For the sake of the state-space representation, we wilDusgethe common denominator for the tranfer functions
The numerator and denominator of the transfer funatiGhwould need to be mulplied by the term

ll?)g = (52 + 2(3wss + w32) (32 + 2CGw1s + w12) (1.5)

Expanding the denominator gives

D

+
+
N
+
3

_SWQ

2C1w1w22 + w227_ + QWQ2Cde + 2w22§3w3) 87
4wy CawsCawa + 2w2 CawaT + wi’we® + 2weCrun T + 4we Giwi Cawa + wawa® + 2wr’GawsT + dwa*(wi Gaws + G
2wp% w3 (g + 4wy w1 GwsT + wo?Twe® + 2wr*Gwiwa® + 2wr (wswa® + 2wa w1 2Cawy + 4w (1w CawaT + «

2
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Expanding the numerator féy/ d gives

Ny =

.
N
.
.
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Expanding the numerator far/d gives
N, = (m}fBl + 7wy By + deQBg) s°
+ ( 2(3ws + 2Ciw1) Twa By + (2ows + 2Ciw1) Twa® B + (2(3ws + 2(ws) Twy Bl)
((wz + 4Giw1Gaws + wy ) Twa’Bs + (W?, + 4Ciw1 (w3 + wy ) Twa By + (w3 + 4Cw2sws + w22) de231) s°
((2C1w1w2 + 2wy CQWQ) Twy’ By + (2C2w2w3 + 2w, Csws) Twy’ By + (2C1w1w3 + 2wy C3w3) TW4q 32)
(

walwswT By + wilws2wi?T By + wewi 2wy TBg) 4 (1.8)

1.2.2 Controllable Cannonical Form

For a system with the transfer function

Y bps" A by bis + by
=z = - (1.9)
U S"+ap1S" -+ a5+ ag
the controllable cannonical realization would be
0 1 0 0
A=| ¢ 0 (1.10)
0 e 0 1
—ap — —0n—1
0
B— | 111
0 (1.11)
1
C=bo—buay b1 —bpar -+ by1—bpan | (1.12)
D =15, (1.13)
For this systerm = 8 and the coefficients of the denominator polynomial are
a =0 (1.14)
a1 = wolwi lwstwyT (1.15)
as = 2wotwr w3 CawaT + wolwr2w3twe? + 2wowr 2Cawswd T + 2wa?Gruwsiwg T (1.16)

2 .2 2 2 2 2 .2 2 .02 2 2 .2 2 2 2 2 2
a3 — Wy W1 Wq T—|—4CLJ2 Clwlwg CdeT+4u)2 w1 Cgu)ggd(,ddT—FWQ W3 Wy T+2W2 W1 Ws Cdbdd‘i‘QWQ C1w1w3 Wq +4w2 (1001\

(1.17)
ay = 2wo w3 CawaT+4wy? Crwi w3 Cuwatwa wr 2ws? +wy?wi 2wt 42w (awswa T +2wy > Gwi ws T 42wy w1 (g T +2wy*w
1.18
— 9 20n2 2 2_ 2 2 2 2 2 2 2 2 ( 2) 2
a5 = 2wy w3 (awg+4ws G s T+wo Twy” +2we “ Cuwy” +2wse “ (3w3wy” +2ws “ w1 “ (awq+4ws“ (1w (awyT+ws “w1 “T+4
(1.19)
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s = dws>(3wsCawat2wa CawaT +wi 2wy’ +2wae Crwy TH4ws w1 Cawatwa *wa® +2we? (awa T +4ws* (1w (w3 +wa *ws

(1.20)
a7 = 2Cwiwa” + woT + 2wo*Cawa + 2wa>(3ws (1.21)
ag = (.d22 (122)
becauseis # 1 all of the coefficientsd,, andb,,) must be divided by:; before being plugged into the matix
representation.
With 6 as the output, the coefficients of the numerator polynomial are
by = wowi w3 wy T (1.23)
bl = 2w22C1w1w32wd27 + 2w22w12C3w3wd27 + Qde2C2w2w32w12 (124)
by = 47wy Cwaws Grwr 4+ wolws?wa T + 417w Cowalawswi? + 4wa Guwr (wawe T 4+ wolw 2w T + wilwsw T
(1.25)
by = 27wy Cowawr 2+2wa (1w T+ 2wa (3wswa T+ 2Tw i Cowaws® +-8Tw % Cowa (aws (1w +2Twe 2 Crwi ws* +2Twe w1 2 (3w
(1.26)
b4 = w227'wd2 + 47'wd2§2w2(’1w1 + 4de2C1W1C3W3 + de2w12 + 4de2§2w2§‘3w3 + de2w32 (127)
by = 27w Cows + 2Twa Caws + 27wy Cluwn (1.28)
be = Twy> (1.29)
With & as the output, the coefficients of the numerator polynomial are
bp =0 (1.30)
by =0 (1.31)
by =0 (1.32)
bs =0 (1.33)
by = wolws w AT By + wi?ws wg T By 4+ wowi w1 B3 (1.34)

b5 = 27wd233C1w1w22—|—27'wd233w12<’2w2+27'wd231C2w2w32—}—27‘wd231w22ngg—|—27‘wd232§1w1W32+27‘wd232w12C3w3

(1.35)
bG = de2ng22—|—4de2nglwlngg+de2ng12—|—7wd2ng32+47wd2Bg<1w1C3w3+de2ng12+7wd231w32+47'wd231(
(1.36)
b7 = 2de2B2<3(.U3 + 2de232C1w1 + QTWd2B3C2w2 + 27'wd2B3§1w1 + Qde231C3W3 + 2de231<2(.U2 (137)
bs = Twy’B1 + Twy’ By + Twy’Bs (1.38)
Finding the transfer functio6/d from the matrices according to
0 _
g:C(SI—A)lBH) (1.39)
gives
Ll (1.40)

d  swi?(s+7)(s%+ 25Cwa + wa?)

4



CHAPTER 1. THREE MODE POLE PLACEMENT CONTROLLER April 30, 2004

giving us back what we started with and proving that the state-space representation is correct. Similarly tf
numerator of the transfer functiaryd from the matrices is

N, =s* <s2 + 2(was + w22) <32 + 2sC3ws + u)32) wg?T By +s* <s2 + 2sC3ws + w32) <s2 + 2sCwy + w12) wa?T Byt-s* (

(1.41)
which is exactly what we started with in equatjon|1.3. and the denominator can be written as
D = swy? (s +7) <82 + 25Cqwq + wd2> (82 + 25(3w3 + w32> (82 + 2sCiwy + w12> (1.42)
The state space matrices are given by
[0 1 0
0 0 1
0 0 0
0 0 0
A =
0 0 0
0 0 0
0 0 0
0 _w12w32wd27. *2‘0220‘)1QWSQCdeT*WZQCUl2W32wd2;222w22w12CSWSWdQT*2W22<1W1w32WdQT —wo?wi 2wy T — 4wy wi w3 (wyT — 4wy
(1.43)
r 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 4 2 2 A 2 (
C w12w32wd27_ w2 ®(lwiwz“wyg T+2ws W1w§§w3wd T+27wy* owaws“wy Twg " Cowawsz“ (w1 w2 w3 wa*T+4TWwy CQW2C3W:35;12 +4w2<(q
- 0 (de2B1+deQBg+de2Bg)w12w32wd2T (de2B1+deQBg+de2Bg)(2w22w12w32<dwd7+w22w12w32w(
L - wo? - wot
(1.44)
0
D= (1.45)

de2Bl +de232 +de2B3
2

w2

This state space system representation is output to the eefdecelwnums3modes.m
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1.3 State-Space Model Verification

Figure[1.1 overlays bode plots for the hydraulic actuator from the transfer function and state-space models wi
experimental data. Figufe 1.2 does the same for the flexible base model. The close agreement between
transfer function and state-space curves gives me a high degree of confidence that the state-space derivation
done correctly. The reasonable agreement between the bode plots generated with the state-space model an
experimental data gives me reasonable confidence that the model will accurately represent the physical syster

20— : ——— : —
—_ —— swept sine data
% 101 o o fixed sine data [
g —— tf based model
-2 Us ss absed model [
[

C -10f 8
&
S ool Wm«w |
_30 L | L L L L L | L L L
10° 10’
___—100¢ © .
@)
0]
2 _i50} 1
(o)
)
©
£ 2001+ b
o
-250 : :
10° 10’

Figure 1.1: Comparison of bode plots from transefer function and state-space based models and experi-
mental data for the hydraulic actuator. The input is the voltage into the servo-valve of joint 2. The output

is joint 2 angular position. The parameters for the models are from a curve fit with a phase weighting of
0.1.
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Figure 1.2: Comparison of bode plots from transfer function and state-space based models and experimen-
tal data for the flexible base. The input is joint 2 angular position and the output is base acceleration. The
parameters for the models are from a curve fit with a phase weighting of 0.1.
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1.4 Digital Controller/Observer Design

This file documents the design of a digital state feedback observer controller for SAMII. The open loop pol
locations for SAMII operating around a nominal configuratiori-e90°, 90°, 90°, 0°,0°,0°) are

0
—158.9
_5.275 4+ 156.7i
| —5.275 - 156.7i
Pol =\ 7799 1 54.74;

—7.729 — 54.74i
—0.3245 + 10.88i
| —0.3245 — 10.88i |

The poles for a system having unthfeedback and no vibration suppression are

[ —5.275+ 156.7i |
—5.275 — 156.7i
~128.3

| —4.214 4 52,840
Poro =1 _ 4914 — 52.84i
—37.56
—0.3245 + 10.88i
| —0.3245 — 10.88 |

The desired pole locations for the state feedback system being designed are

[ —110.9 — 110.9i

~110.9 + 110.94
~128.3

| —37.48 — 37.48i

Pdes = |37 48 1 37.48;
—37.56

—7.698 — 7.698i

| —7.698 + 7.698i

Figure[ 1.3 plots the real vs. imaginary parts of these poles.

Figure[ 1.4 plots the real vs. imaginary parts of the digital poles.

Figure[ 1.5 shows a bode plot féfv for the closed loop state feedback system with the desired pole locations.

Figure[ 1.6 shows a bode plot for observer system designed by pole placement.

Figure[ 1.7 shows the step response of the state feedback controller observer without any noise.

Figure[1.8 shows the step response of the state feedback controller observer system from a simulation
Simulink with accelerometer noise.

While the acceleration signals from Figufes|1.7 1.8 look promising, this controller made the thhird mod
of the flexible base unstable when implemented experimentally. This third mode instability lead me to refit -
wider frequency range of my bode data to include the third mode in my models and to begin redesigning a ne
controller similar to this one but considering the third mode.

(1.46)

(1.47)

(1.48)
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Figure 1.3: Pole locations for the open loop system, a controller for SAMII that has only feedback (i.e. no
vibration suppression), and the desired pole locations for a full state feedback system.
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Figure 1.4: Digital pole locations for the open loop system, a controller for SAMII that has only) feedback
(i.e. no vibration suppression), and the desired pole locations for a full state feedback system.
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Figure 1.5: Bode plots ford/v and i /6 for the SAMII control system with the desired closed loop poles.
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Figure 1.6: Bode plots for an observer system designed by pole placement.
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Figure 1.7: Step response for the state feedback controller observer system with no noise.
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Figure 1.8: Step response for the state feedback controller observer system from a Simulink simulation
with accelerometer noise.
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1.5 Implementation: Dither/Noise Problem

The controller seemed to perform fairly well in simulation and it seemed the time had come to implement i
experimentally. The real world was not as kind. Enabling accelerometer feedback with this controller resulted |
the valve oscillating back and forth at a fairly high frequency. While | could hear the valve moving, the arm jusi
started to drift. | recreated this response by sending a dither signal to the valve.

Figure[ 1.9 shows the effect @h of switching on the state-space controller and then switching on acceleration
feedback. (When acceleration feedback is turned off, a constant value of 0 is used to replace the measured acc:
ation value). The state-space controller can be switched on without much problem. However, when accelerome
feedback is switched on, noise sensitivity causes a serious problem. Note that | am able to recreate the drifti
of the joint angle by sending a 200Hz voltage to joint 2. Simply setting the voltage to a 0 volt DC value does na
cause the drift. Figule 1.1.2 shows that the DC value of the input voltage when the acceleration feedback has b
switched on is approximately zero, but the voltage is switching fairly rapidly from the positive to the negative
saturation limit. This seems to indicate that the joint is being dithered by the input voltage.

Figure[ 1.10 shows the effect ap of switching on the state-space controller and then switching on acceleration
feedback.

Figure/ 1.11 shows the effect @n of switching on the state-space controller and then switching on acceleration
feedback.

15
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Figure 1.9: The effect oné, of switching on the state-space controller and then switching on acceleration
feedback.
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Figure 1.10: The effect ona, of switching on the state-space controller and then switching on acceleration
feedback.
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Figure 1.11: The effect onuv, of switching on the state-space controller and then switching on acceleration
feedback.
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Figure 1.12: Zooming in on Figure[1.11.
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Figure 1.13: Bode plot of the voltage sent to the joint 2 actuator.
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A.1 Matlab Files Used

A.1.1 Main Matlab File

The main Matlab file isdigital design 01 09 04.m | This file designs a digital pole placement con-
troller/observer to place the first three poles of SAMII. The pole placement is done by leaving the magnitude c
the pole (the undamped natural frequency) unchanged, but changing the damping ratio to a specified value.
This function calldoadparams_ss 01 09 04 _s4 m3 to define the state-space matrices A, B, C, and D
based on coefficents from curve fitting bode data.
This function outputs a text file that can be cut and pasted into a intialization block of a masked subsystem
Simulink for easy implementation of this controller in simulation or experimentally using real-time workshop.

A.1.2 Additional Matlab Files
ccfaccel3modes.m

This file starts with the transfer functions for the hydraulic actuator and base acceleration including the firs
three modes of the flexible base. From there it derives a controllable canonical state space representatior
the system. This file outputs the results of its derivation to a LaTeX file for easy readability. The output file is
ccfaccel3modes.tex

The transfer functions used in this derivation includesanerm in the numerators of the transfer functions
between the base accleration and the theta input (angular positiori)/@)e.

It also creates a Matlab m-file that defines the state space matrices in terms of the variables used in this deri
tion. Editting this file so that it begins with numerically defining each of these variables (i.e. w1=2*pi*10), gives
an m-file that has the properly defined state space representation of the system. The output m-file generatec
this file isccfaccelwnums3modes.m  and the editted version cfaccelwnums3modes_editted.m
which actually evalutes the lines of the filesdefit_11 14 03 pw=0_1.txt where the parameters are all
defined.

ccfaccelwnums3modes.m

This file was created by the m-filcfaccel3modes.m  and it contains a CCF state-space model for SAMII
based on SISO transfer functions about a nominal operating point. To make this function useful, it must be editts
so that the coefficents it uses are numerically defined before they are used.

cctaccelwnums3modes _editted.m

This appears to be one of two main files in this directory, the other lBgital_design_01_09_04.m
This file loads curve fit parameters and then defines the state-space model based on those parameters. It
compbodeplots_01_ 09 04.m to compare bode plots from transfer function and state-space models with
one another and with experimental data.

The parameters used by this file are stored in théobldefit 11 14 03 pw=0_1.txt
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[clpolelocs.m |

A=varargin{1};
B=varargif 2};
C=varargif 3};
deszeta=vararg{@};

varargouf1}=eigcl;
This function finds the desired closed loop poles of a state feedback controller for SAMII by first finding the

poles with unity theta feedback and then moving any complex poles to the same natural frequency but with t
specified damping ratio.

[compbodeplots  _01_09_04.m|

This file generates the bode plots from transfer function and state-space models of the system. This file is call
by ccfaccelwnums3modes_editted.m . This function callssamiimodel

[digital _design _01_09_04.m|

This file designs a digital pole placement controller/observer to place the first three poles of SAMII. The pol
placement is done by leaving the magnitude of the pole (the undamped natural frequency) unchanged, but cha
ing the damping ratio to a specified value.

This function calldoadparams_ss 01 09 04 s4 m3 to define the state-space matrices A, B, C, and D
based on coefficents from curve fitting bode data.

This function outputs a text file that can be cut and pasted into a intialization block of a masked subsystem
Simulink for easy implementation of this controller in simulation or experimentally using real-time workshop.

| { 4 m301 .m

This file loads experimental swept and fixed sine data. The swept sine data is loaded into global variables. Tt
file is called byccfaccelwnums3modes_editted.m

[oadparams _ss _01_09_04_s4 _m3.m

This function loads system parameters from curve fit data and then defines state-space matrices based on tt
parameters. It also defines a transfer function model based on the same parameters for comparison purposes.
outputs of this function as A,B,C, and D matrices and transfer functions for the hydraulic actuators and flexibl
base.

This function is very similar t@cfaccelwnums3modes_editted.m except that it is implemented as a
function so that all of the parameters defined to create the matrices do not clutter up the workspace.

This function is called byligital design_01_09 04.m so that it will have a system model to design
the controller around.

22
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matrix __ssobs.mat
samimodel.m

This function is called bgompbodeplots_01_09 _04.m . This function takes a vector of coeffiecients as an
input and outputs the bode magnitudes and phases for both the actuator and flexible base models.
coeffsin=varargifl};

varargouf1}=actfit_mag;
varargouf2}=basefit_mag;
varargouf3}=actfit_ph;
varargouf4}=basefit_ph;

sim _w.obs R13.1 sat fixed _011504.mdl
ssbodedata.m

This function generates bode plot data for a state-space model.

A.1.3 Verbatim Matlab Files
[ssJan04 fullstory verb apndx.pdf
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Chapter 2

Encoder Trouble Shooting

SAMII's joint 2 encoder has intermittently seemed to the software or the Quanser board. If he oscilloscope
read incorrectly. The most obvious sign of this probleamd the Quanser reading are the same, but both seem
has been sending joint 2 td @nd having the arm beoff compared to the actual physical configuration of the
visibly 5-10° above horizontal. joint, then the problem is in the hardware somewhere (a

In an attempt to determine whether this is a hardwa®@ese wire or something).
or software problem (i.e. is the encoder not sendingSince the Quanser signal seemed to be reading cor-
Quanser the correct electrical signals, or is some pro&etly when this data was collected, this data only veri-
lem with the real-time kernel causing Quanser to mifss that the oscilloscope was able to sample fast enough
some counts of the encoder), | hooked the encoder upta didn’t miss any counts.
an oscilloscope. The oscilloscope data was then savefigure[2.]1 shows the joint responég(t) when a
to an ascii file over an ethernet connection and the dadtnmanded step input is given to move the joint from
was analyzed in Matlab. 90° to 0°. It takes SAMII a little over 1 second to

complete this motion. Figurgs 2.2-P.4 zoom in on vari-
ous portions of Figurg 2.1, showing that the agreement

2.1 \erification of Oscilloscope between Quanser and the oscilloscope reading is quite
d.
Measurement 900

This document compares the encoder measureme : L
the Quanser/Wincon software with that from an osc:?-'oé Problem Captured with Oscil

loscope (the oscilloscope measurement was processed Ioscope

using Matlab code to convert it to degrees from the two

digital signals). During this testing, the Quanser redeébsrtunately, | was able to capture this intermittent prob-

ing appeared to be correct, i.e. with joint 2 readixig lem with the oscilloscope before too long. Figureg 2.5-

the link appeared to be truly horizontal. [2.16 show data from tests when the encoder reading ap-
The idea behind doing this was to have a way to gpeared to be a problem.

ternally verify the encoder reading. If the reading in One way that the problem manifested itself was an

Quanser appears to be off, the oscilloscope and the Mgiparent flat spot in the graph of angle versus time un-

lab data processing can be used to verify whether or det a constant voltage input to the valve (Figurg 2.5,

the encoder signals that are reaching the Quanser béaréxample). A constant voltage should give a constant

is correct. If the oscilloscope data shows that the cwelocity, so that this graph should be a straight line. Fig-

rect signals are reaching the board, then the problerarieg 2.5] 2.9, ar[d 2.]L3 all show a glitch arounti 35e
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100 — Oscilloscope

—— Oscilloscope
— Quanser 45*\ —— Quanser
80r 1 44l
60, 43’
@ §> 42+
S 40r =
JRY A
20, 407
39r
O,
38+
=20 L 1 | | 37 ! I | | ~
0 05 1 15 2 0.5 0.52 0.54 0.56 0.58 0.6

Time (sec) Time (sec)

Figure 2.1: Verifying the Quanser encoder reading Figure 2.3: Verifying the Quanser encoder reading

for joint 2 using an oscilloscope. for joint 2 using an oscilloscope. (Zooming in on the
middle of Figure[2.7)).
90 = 8 ‘ \
- 8SC'HOSCOpe —— Oscilloscope
uanser 7\\ —— Quanser
851 6r
5,

> —
S 80 g 4r
o 3

75}

70 ‘ ‘ ; ‘ ‘ ‘ ‘

0 0.05 0.1 0.15 02 | 1.1 1.2 1.3 1.4 15

Time (Sec) Time (SeC)

Figure 2.2: Verifying the Quanser encoder reading Figyre 2.4: Verifying the Quanser encoder reading
for joint 2 using an oscilloscope. (Zooming in on the for jint 2 using an oscilloscope. (Zooming in on the
beginning of Figure[2.1). end of Figure[2.1).

25



CHAPTER 2. ENCODER TROUBLE SHOOTING April 30, 2004

repeatability of this error seems to indicate that it is a
hardware rather than a software problem.

26



CHAPTER 2. ENCODER TROUBLE SHOOTING April 30, 2004

221 Testl

Figure[2.5 shows the angle vs. time response for the
first test preformed on 01/28/02. The angle is calculated
based on encoder signals captured directly by the oscil- 45
loscope. The response should be essentially a straight
line. There is a flat spot in this line around°3%-igure
[2.§ zooms in on the portion of Figure R.5 with the flaté"’ .
spot. ~
Figure[2.7 shows the digital encoder signals for the
same time as in Figufe 2.5. The flat spot is where there
appears to be a blank spot in Fig{ire] 2.7 around 0.7 sec-
onds. Figuré 2|8 zooms in on this blank portion of Fig-
ure[2.7. Figuré 2]8 would seem to indicate that the arm
just stop moving for a few hundredths of a second. This 205 055 06 065 07 075 08
did not appear to be the case watching the movement Time (sec)
(it appears to move with constant velocity to the naked

eye). But, I don’t know if | would be able to see suchgigyre 2.6: Encoder readings with trouble-shooting
glitch without the aid of high speed video. Fortunatelyjre connected directly to the encoder. Test #1 .
the results in sectioris 2.2.2 and 2]2.3 are more congltsoming in on Figure[Z.5.)

sive.

50

\ — Osé:illosco;:‘)e \

301

251

100 : :
| — Oscilloscope |
80 6 T ChA
—— ChB
5,
60+
2 4
T 40f
= S 4
20 )
S 2r
>
0,
1t
—2 I I I I
—8.5 0 0.5 1 1.5 2 V]3
Time (sec)
s 0 0.5 1 15 2

Figure 2.5: Encoder readings with trouble-shooting Time (sec)

wire connected directly to the encoder. Test#1. Sam-

pling frequency of 5kHz. The +5V is externally sup- Figure 2.7: Encoder signals after software process-

plied and the encoder is not connected to Quanser ating for noise. Test #1. Sampling frequency of 5kHz.
all.
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M T

Voltage (V)

Rl RRL LA

0.67 0.68 0.69 0.7 0.71
Time (sec)

Figure 2.8: Encoder signals after software process-
ing for noise. Test #1. (Zooming in on Figurg 2]7.)
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2.2.2 Test2
100

Figure[2.9 shows the angle vs. time response for the
second test preformed on 01/28/02. Just as in test 1, gl
there is a flat spot in this line around°35Figure[2.1D
zooms in on the portion of Figufe 2.9 with the flat spot. |
Figure[2.11 shows the digital encoder signals for the,
same time as in Figufe 2J10. Around 0.37 seconds th8 40}
encoder seems to do something strange, similar to whaf'
was seen in Figure 2.7. Figure 2.12 zooms in on this  2o;
portion of Figuré 2.1]1.
There is one key difference between Figure .12 and oy
what was seen before in Figyre2.8. Instead of both en-
coder channels stopping for a short time (as in Figure -20 5 05 ] s p
[2.8), channel B reads several counts while channel A Time (sec)
holds constant. The only way that this could actually re-
flect the true motion of system is if the arm where to v

brate back and forth through 1 count, so that only Ch&l:—'rllgure 2.9: Encoder readings with trouble-shooting

i L wire connected directly to the encoder. Test #2. Sam-
nel B was triggered. The encoder resolution is rough ¥ treauency of BkHz. The +5V is externally SUo-
0.0439 (8192 counts per revolution or 360/8E92 It pting treq y . y sup

seems highly unlikely that this oscillation in joint 2 a Dlied and the encoder is not connected to Quanser at

gle actually happened. This would seem to indicate tﬁlgt
something is wrong with the sensor.

The results from Test 4 (sectipn 2.2.3), seem to show
slightly more clearly that this is in fact a sensor issue. 95

\ —— Oscilloscope \

o

\ — Oscillc;scope \ |

50

451

401

6, (deg)

351

301

25

0.3 0.35 0.4 0.45 0.5 0.55
Time (sec)

Figure 2.10: Encoder readings with trouble-shooting
wire connected directly to the encoder. Test #2 .
(Zooming in on Figure[2.9.)
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T T T T 7ChA
5 -7 ChB

Voltage (V)

0.3 0.35 0.4 0.45 0.5 0.55
Time (sec)

Figure 2.11: Encoder signals after software process-
ing for noise. Test #2. Sampling frequency of 5kHz.

Voltage (V)

0.37 0.375 0.38 0.385 0.39
Time (sec)

Figure 2.12: Encoder signals after software process-
ing for noise. Test #2. (Zooming in on Figurg 2.7]1.)
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2.2.3 Test4

Figure[2.1B shows the angle vs. time response for the S | | \ —— Oscilloscope \

fourth test preformed on 01/28/02. Just as in tests 1 and 5

2, there is a flat spot in this line around°3%igurg 2.14

zooms in on the portion of Figufe 2]13 with the flat spot.
Figure[2.15 shows the digital encoder signals for the

same time as in Figufe 2]14. Flg.;G zooms in org 40

the portion of Figur¢ 2.15 where there is a flat spot it_«

Flggre@. o . as|
Figure[2.1p seems to indicate that there is a sensor

problem slightly more definitively than Figure 2]12 did.

In Figurg 2.16, channel B appears to continue reading as

if the arm is moving with constant velocity while chan- ‘ ‘ ‘ ‘ ‘

nel A appears to stop. This reinforces the constant ve- 0.3 0.35 T?r#e (se0) 0.45 0.5

locity motion that would be expected and seems verified

by the naked eye observation of the motion. It appears

that something was wrong with channel A during thiggure 2.14: Encoder readings with trouble-shooting

portion of this test. Perhaps the encoder lines for chavire connected directly to the encoder. Test #4 .

nel A are damaged or dirty in the portion of the encod@ooming in on Figure[2.13.)

wheel around 35for joint 2.

O,

301

100

6
80 — ChA
5 — ChB
=)
£ o -
s | — Oscilloscope | % \
(o))
20¢ £
g

-2 . . . . . .
—8.2 0 0.2 0.4 0.6 0.8 1 1.2
Time (sec)

0.3 0.35 0.4 0.45 05
. . . . Time (sec)
Figure 2.13: Encoder readings with trouble-shooting

wire connected directly to the encoder. Test#4. Sam- _
pling frequency of 10kHz. The +5V is externally sup- _Flgure 2._15: Encoder S|gnals_ after software process-
plied and the encoder is not connected to Quanser ating for noise. Test #4. Sampling frequency of 10kHz.

all.
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Voltage (V)

T UG D L

0.37 0.375 0.38 0.385 0.39
Time (sec)

Figure 2.16: Encoder signals after software process-
ing for noise. Test #4. (Zooming in on Figuré 2.75.)

2.3 Conclusion and Encoder
Cleaning

Based on the results of these tests, it was concluded that
there is something wrong with the encoder (this is not a
software nor does it appear to be a wiring problem - a
loose wire would not be this consistent).

As a first attempt to solving this problem, the en-
coder was taken apart and the wheel was cleaned. The
problem has not reoccurred since the encoder wheel has
been cleaned. Unless the problem begins to reoccur, |
will assume that the problem has been solved.
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A.1 Matlab Files Used

A.1.1 Main Matlab File

The main Matlab file iprocess encoder data |

01 28 04.m | This file processes the encoder data
from testing done on 01/28/02. The encoder signals are
first cleaned up. Anything below 1 volt is set to zero
and anything above 3 volts is set to 5. The two chan-
nels of the encoder are then processed to determine the
angle vs. time signal. The angle versus time as well
as encoder signals versus time are plotted. Based on a
vector of x-axis limits determined manually, plots are
generated that zoom in on the relevant portions of the
curves. Encoder data was not recorded with the Quanser
software for these tests becuase previous testing had al-
ready showed good agreement between Quanser and the
oscilloscope mesaurements.

A.1.2 Additional Matlab Files

[process _encoder _data _01_23_04.m|

This file processes the encoder data from testing done
on 01/24/02. The encoder signals are first cleaned up.
Anything below 1 volt is set to zero and anything above
3 volts is set to 5. The two channels of the encoder
are then processed to determine the angle vs. time sig-
nal. The angle versus time is plotted. The results of
this processing algorithm are overlayed with the angle
recorded using the Quanser software. The agreement is
quite good, showing that this algorithm can be trusted
and that the oscilloscope is sampling fast engouh that
counts are not being missed.

A.1.3 Verbatim Matlab Files

lencoder _troubleshoot fullstory.pdf
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Chapter 3

Transfer Matrix Analysis

3.1 Transfer Matrix Derivation for a Beam Element

The shear force can be written as
V = Ay cosh (ﬁ;:) + As sinh (ﬁf) + Aj cos (%) + Ay sin (ﬁf) (3.1)

The shear force is related to the displacement according to

Ccliv = —pww (3.2
Xz
This can be rearranged to give
—1dV
[ is defined to be
w24
=t (3.4)

Solving equatioh 3]4 fonw? and substituting the result in equatfon|3.3 gives the following equation:

4

w = FEI dr (3.5

Differentiating equatiof 3]1 and substituting the result into equétign 3.5 gives

w= - (Al sinh (ﬁ;ﬁ) + Ay cosh <ﬁlx> — Ajs sin <ﬁlx) + Ay cos (%)) B3EIT! (3.6)

By definition,
p=—— (3.7)
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Differentiating equatiop 3|6 gives

=12 (Al cosh (5:) + Ay sinh (?) — As cos (ﬁll’> — Ay sin (ﬁll)) B2E[!

By definition,

M:El%
dx

Differentiating equatiofi 3|8 gives

M=1 <A1 sinh <ﬁlx> + Ay cosh (ﬁ;ﬁ) + Az sin (ﬁlx) — Ay cos </6l$>> gt

Equations$ 3J1, 3|6, 3.8, and 310 can be rewritten in matrix form as

z(z) = B(x)a
where
—w
v
Ay
a= A
As
Ay
[ alsinh (ﬁl—’”) B3 al cosh (%) 373 —alsin (%) 373 alcos (%) B33 ]
B a cosh (%) 372 asinh (ﬁl—x) 32 —acos (ﬁl—x) 372 —asin (ﬁl—x) 32
| sinh (% B~Y  lcosh (%) Bt lsin (Tm) B3t —lcos (Tm) Bt
I cosh (%) sinh (%) coS (%) sin (%) |
and
l2
“=
Evaluating equatiop 3.11 at each end of the beam gives
z(0) = B(0)a
and
z(L) =B(L)a

Solving equation 3.16 fai gives

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Substituting equation 3.]18 into equatfon 3.17 gives
z(L) = B(L) [B(0)] " 2(0)
The transfer matrix betwees{0) andz(L) can then be written as
Uy = B(L) [B(0)]
B(0) is given by

e}

al
5 g
a g _a
BO)=| " 7
0 L 0 -
10 1 0

andB(L) is given by

[ alsinh(B8)  alcosh(B)  alsin(B) alcos(fB) ]
B3 B3 B3 B3
a colel(ﬂ) a sinlzl(ﬂ) _a 0052(6) _a sin2(6)
B(I) — 8 E E E
( ) Isinh(3) I cosh(f) Isin(B) __lcos(B)
B B B §;
| cosh (f) sinh(B8) cos(8) sin(B) |

Substituing equationjs 3.R1 and 3.22 into equdtion|3.20 gives

[ 1/2 cosh (3) + 1/2 cos (B)
B (sinh(83)—sin(3))
/2 72—

1 /2 8(eosh(8)—cos(9))

8 (sinh(8)+sin(5))
12—

VQW

a(sinh(8)+sin(8))
1/2 aleinh(B) ()

1/2 cosh () 4+ 1/2 cos (B)
B (sinh(B)—sin(8)
1/2 ( ) B)

1/2 cosh (/)

I(sinh(B3)+sin(B8))
1/2 Ueimb(@)ein(3)

1/2 cosh (B) 4+ 1/2 cos ()
1/2 B(sinh(8 ) sin(3))

1/2 5 COSh(ﬁ)_COS(ﬁ))

a

1/2 al(sinh( ,8) sin(3))

1/2 a Cosh(ﬁﬁ)2 cos(f))
I(sinh(3)+sin(B))
1/2 Yeimb(O)sin(®)

+1/2 cos (B) |

Rewriting the transfer matrix in terms of subexperssions gives

c(1) 1/2%
/2842 c(1)

1/2 ﬁzz(?») 1/2 512(2)

1/2 %53 1/2‘”6
17292 1/2%0)

c(1) 1/24R

I 1/2 /33;(4) 1/2 /322(3)

36

1/2848 (1)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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where
1/2 cosh () + 1/2 cos ()
. sinh (8) — sin (/) (3.25)
cosh () — cos (4)
sinh (3) + sm( )

Alternatively, the transfer matrix betweefL) andz(0) can then be written as (reversing the order of multilpli-
cation)

Uoz = B(0) [B(L)] " (3.26)
which can be written as
i I(sinh sin
1/2 cosh () 4+ 1/2 cos (B) —1 /2 Usinh(8)Fsin(5)) (ﬂ); (8))
. 1/2 @B /9 cosh (3) + 1/2 cos ()
o 1 /2 B2(cosh(8)—cos(5) [ /2 BU=sinh(8)+sin(3))
—1/2 63(sinh(53+sin(ﬁ)) 1/2 B (cosh(3)—cos(83))
1/2 a(cosh([?;cos(ﬁ)) 1/2 al(— sinh/(g,(;)Jrsin(ﬁ)) -
a(sinh(B8)+sin(f)) a(cosh()—cos(f))
AT VAT (3.27)
[(sinh in '
1/2 cosh () 4+ 1/2 cos () —1/2%
1/2 mﬂmh(?)“in(ﬁ)) 1/2 cosh (3) +1/2 cos (B) |

which can be rewritten in terms of subexperssions to give

lcOL ac L alcOL y
cOL(1)  —1/21%0 /gl palell)
1/2 £0L2) cOL(1)  —1/2 L‘;Ll(“ 1/2 L‘;LQ<3>
UoL = B2cOL(3) BlcOL(2) 1cOL(4) (3.28)
1/2T 1/2T COL(l) _1/2T
3C 2C C
| 12 ZOLA) 9 BOLB) - jo BeOL) ¢0L (1)

where
1/2 cosh (B) + 1/2 cos (B)
oL — — sinh () + sin (5) (3.29)
cosh () — cos ()

sinh () + sin (B)
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UsingB(0) andz(0) to determine the coefficentsgives

1/2 V0
B MO
/257
1/2 V0
B MO

| —1/25

ag —

3.1.1 Cantilevered Beam

(3.30)

To illustrate the difference betwedn,; andU ,, consider the response of a cantilevered beam. The boundary

conditions for a cantilevered beam are given by

0
0
Mo
Vo

20 =

and

YL
0
0
In order for the equation(0) = Uz(L) to hold for all values otv(L) and« (L) the submatrix

[ =

1/2 cosh () + 1/2 cos (B) _1/2w

1/2 S sinb@)+sin(d)) 1/2 cosh (B) +1/2 cos (B)

U(1:2,1:2) =

must have zero determinant. This determinant can be written as

|U(1:2,1:2)| = 1/2 cosh (B) cos (B) + 1/2

(3.31)

(3.32)

(3.33)

(3.34)

Setting this determinant equal to zero gives a transcendental equation that can be sgivéafdahe first mode

of a cantilevered beam,
5 =1.8751

Substituing this value fof into equatior 3.25, gives
1.5189
2.23

—3.637
4.1381

38
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+X

Ny,
7z

(+W
¥ y(<0)

Y

+Z

Figure 3.1: The first mode of a cantilevered beam with the sign conventions used for this derivation.

Substituing this value fof into theU,;, andU;, matrices gives

15189  —1.1034] 0.5172la —0.16912al
—2.090717"  1.5189  —1.1034%  0.51721a

Uy, = (3.37)
639390 —2.0907L 15189  —1.10341

—13.6415 6.3939a~! —2.090717! 1.5189

and
1.5189 1.10341 0.51721a 0.16912al

2.09077°'  1.5189  1.1034¢ 0.5172la

U = (3.38)
6.3939a~'  2.0907L 15189  1.10341
13.641 L 6.3939a7' 2.09071°'  1.5189

The first row of the matrix equation0) = Ug.z(L) is

—1.5189w;, — 1.1034 1y, = 0 (3.39)
While the first row of the matrix equatian(0) = Uyz(L) (note that this is using the incorred®) is

— 1.5189wy, + 1.1034 13y, = 0 (3.40)

Figure[3.1 shows the sign convention for this derivation and how it applies to the first mode of a cantilevere
beam. v is measured from horizontal with counter-clockwise being positiveis positive in the downward
direction. Positivav will produce negative). This is what is found in equatidn 3]39, but the opposite of what is

predicted with equation 3.40.
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h \./ >Mi+]

Y
Z [ Vi

Figure 3.2: Sketch of the rigid body being analyzed in this section.

B.0.2 Matlab File Used

Matlab File Summary

This file uses the Matlab filBmatrix deriv.m | This file derives the transfer matrix for a beam element based
on the solution of the differential equation as in Chapter 5 of Pestel.

The B transfer matrix is derived for transfering the state vector from left to right or from right to left: i.e.
zr = Ugpzr, Or z;, = Upr2R.

Verbatim Matlab Text

[Bmatrix deriv_editted verb apndx.pdt

3.1 Rigid Mass Transfer Matrix Derivation

3.1.1 R

If w is positive downward ang is positive in the counter-clockwise direction, then from Fiduré 3.2 it can be
shown that
Wip1 = w; — Yl (3.41)

To derive the matribR; ;4 that transfers from statioi- 1 to station: (i.e. zo = Ry1z1), equatiorj 3.41 must be
solved forw;:

40
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This equation gives the first row of ti; ;; matrix
Riipi(L,)=|1 =1 0 0] (3.43)
Note that—w is used in the state vector so that the first row oflg;, matrix represents the equation

—Wi+1

Vit
Because the link is rigid, the value ¢fdoes not change from one end to the other, so that the second row of the

matrix is
Rii1(2:)=[0 1 0 0 (3.45)

The sum of the moments about any point on a rigid body is given by
ZMA:’ITLI‘Q/A xaA—l—ﬁA (346)

To derive the matriR,; ;1 that transfers from statioi+ 1 to station:, the moments must be summed about point
i (to avoid introducing/; into the equation). For this case, poitiin equatiorny 3.46 is replaced by pointhe left
end of the rectangle in Figufe 3.2. This choice of polngivesr,,4 = —hi anda, = <k so that equatiop 3.46
can be written as

Miyyr — M; — Vi I = mhai; + H, (3.47)
For the planar motion case being considered,
Hy=Ila (3.48)
where
I; = I, +mh* (3.49)
and
a=—w (3.50)

Substituing these results into equation 3.47 gives
Mip1 — M; = Vigr | = mhais; — (Iog + mh?) w?y (3.51)
In order to solve for\/; in terms of only quantities at statiant- 1, w; must be rewritten as
Wi = —w” (wipr + 1) (3.52)
Substituting this experssion into equatjon 3.51 and solvingfogives
M; = (mlh + Ly + mh®) w* + mhwi g 0* = Vier L+ Mg (3.53)
This equation gives the third row of tik; ;,; matrix

Rii1(3,:) = [ —mw?h (mlh+ Ly +mh?)w? 1 —I | (3.54)
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Summing forces for the link gives
V;-&-l - V; = MdAcg (355)

In order to solve folV; in terms of only quantities at statiant 1, a., must be rewritten as

Geg = i1 + (L= h) ¥ (3.56)
or
Geg = —wPwist — (L — h) WPy (3.57)
Substituting equation 3.57 into equatfon 3.55 and solvingf@ives
Vi = mw?wiq +m (I — h)w* + Vi (3.58)

This equation gives the fourth row of ti, ;. ; matrix
Riii(4,) = | —mw? m(l—h)w? 0 1| (3.59)

The entireR,; ;;; matrix can now be written as

1 -l 0 0
0 1 0 0
R, = (3.60)
—mhw? (mhl + I, + mh*)w?* 1 —I
—mw? m (I — h)w? 0 1

3.1.2 Riji
To derive the matrixR,, ; that transfers from statiointo station: + 1 (i.e. z; = Rio2), equatiorj 3.41 can be
used directly to get the first row of the matrix

Riip(L,)=|110 0] (3.61)

Because the link is rigid, the value ¢fdoes not change from one end to the other, so that the second row of the

matrix is
Riy11(2,:)=]0 10 0] (3.62)

If the matrixR,;; (that transfers from stationto station: + 1) is sought, the moments must be summed about
pointi+1 (to avoid introducing/; into the equation). For this case, pointn equatior 3.466 is replaced by point

i + 1, the right end of the rectangle in Fig3.2. This choice of pdigivesr,/4» = (I — h)i anda, = w; 11k

so that equation 3.46 can be written as

Miy1 — M; — Vil = —m (I — h) w41 + ﬁA (3.63)

For this case, .
HA = [i+1 « (364)
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liplsub
Lisy =Ly +m(l—h)’

and (as in the previous case)
a=—w

Substituing these results into equatfion 3.63 gives
Migy = My = Vil = =m (I = h) g1 — (Ieg +m (I — h)*) 0?0
In order to solve forV/; . in terms of only quantities at statianw, . ; must be rewritten as
Wiy = —w? (w; — Y1)

Substituting this experssion into equatjon 3.67 and solvingfar; gives

Mgy = (—=m (= h)l = Iy —m (1 = h)*) o + m (I = h)wiw® + Vil + M;
This equation gives the third row of tik; ., ; matrix

Riyi(3,) = | —m(—h)w? (=m(—=h)l—Io—m(-h?)w? 1 1]
In order to solve fol;;, in terms of only quantities at statiana., must be rewritten as

Ueg = w; — hTL

or
Aoy = —Ww; + WP h

Substituting equation 3.¥2 into equatjon 3.55 and solving/for gives
Viei=m (—wzwi + WY h) +V;
This equation gives the fourth row of tie,; ; matrix
Ri1:(4,:) = [ mw? mhw?* 0 1 }

The entireR,, ; matrix can now be written as

Rii;=
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wp Wi T
l
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| - Vi

Figure 3.3: Sketch of the rigid body being analyzed in this section.

C.0.3 Matlab File Used

Matlab File Summary

This file uses the Matlab filBRmatrix_deriv.m | This file contains my first derivation of the transfer matrix for
arigid mass. | had some questions about the rigid mass transfer matrix as it is given in Dr. Book’s thesis.

| later re-did this derivation with a different convention for h (the distance to the center of mass). This late
derivation was done to compare results with Dr. Book’s lab notebook. The later derivation is domeitnx__
deriv_DrBook_notes.m which generates the filRmatrix_deriv_wjb_notes.tex . It is this later
derivation that is used in the remainder of my analysis and in the utility funatygmasstm.m

Verbatim Matlab Text

[Rmatrix deriv _verb apndX.pdf

3.1 Rigid Mass Transfer Matrix (WJB notes)

3.1.1 Rp;

This is an attempt to recreate tlRe;;, matrix (i.e. a transfer matrix for a rigid body that transfers from a state
vector on the left-hand side to a state vector on the right-hand sjgde: Ry, z;) that Dr. Book derived in his
notebook (not exactly what is in his thesis).
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If w is positive downward ang is positive in the counter-clockwise direction, then from Figuré 3.3 it can be
shown that

UJRZUJL—@/)Z (376)
The state vector is given by
—Ww
’— ]\? (3.77)
V

Because the state vector uses, equatiorj 3.7/6 should be multiplied by -1:
—wg = —wg + Yl (3.78)
This equation gives the first row of thez; matrix
Rpp(1,:)=[1 10 0] (3.79)

Because the link is rigid, the value ¢fdoes not change from one end to the other, so that the second row of the
matrix is

Rpr(2,:)=[0 1 0 0] (3.80)
Summing forces gives
maeg = VR - VL (381)
where )
Qg =W, — ¢ ([ —h) (3.82)
or
ey = —wwy, +w?Y (I —h) (3.83)
Substituing equatiorjs 3.83 into equation 3.81 and solvind/fagives
Ve=m (—waL +wp (I - h)) + Vi (3.84)

This equation gives the fourth row of theg;, matrix
Rpp(4,:) = [ mw? mw?(l—h) 0 1] (3.85)
Summing moments about the center of gravity gives
Ip = Mg — M, -V, (I—h)—Vzh (3.86)
Substituing forVi from equatio4 and replacingwith —w?y gives
— Tw*) = My — My, = Vp, (1= h) — (m (—w?wp + @™ (L= h)) + Vi) h (3.87)
Solving equation 3.87 fak/x gives

Mp = ((hl - h2) w?m — [wz) ¥ — hmw?wy, + My, + Vi 1 (3.88)
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This equation gives the third row of thez; matrix
Rr(3,:) = [ hmw? (Wl — h*)w?m — [w?* 1 1 (3.89)

The entireR z;, matrix can now be written as

1 [ 0 0
0 1 0 0

R, = hmw? (bl — h*)w?m — Tw* 1 1 (3.90)
mw? mw? (I — h) 01

TheRp;, matrix is used to calculater = Rz, Or

1 [ 0 0
—Ww —w
0 1 0 0
v 2 v (3.91)
M hmw? (bl — h*)w?m — Tw* 1 1 M
V V
R mw? mw? (I — h) 0 1 L
Alternatively, theR ; » matrix is given b}’[RRL]il
1 — 0 0
0 1 0 0
Rpp = , . , (3.92)
mw? (I —h) (=hl+h*)wm+ Iw* 1 —I
—mw? hmw? 0 1
and theR ; z matrix can be used to calculatge = R rzR Or
1 -1 0 O
—Ww —Ww
0 1 0 0
v v (3.93)
M mw? (Il —h) (=hl+h?)w*m+Iw? 1 —I M
V V
L —mw? hmw? 0 1 R
Testing the output of myigidmasstm.m  function,
1 [ 0 0
R ! ! 00 (3.94)
T hmw? (W= ) wPm— L 11 '
mw? mw? (I — h) 0 1
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Testing the augmented output of mgidmasstm.m  function (the augmented form is used to find the forced
system response),

[ 1 l 00 0]
0 1 000
Rpra = | hmw? (Wl —h)w*m—1w* 1 1 0 (3.95)
mw? mw? (I — h) 010
0 0 00 1
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D.0.2 Matlab File Used

Matlab File Summary

This file uses the Matlab filBmatrix_deriv_DrBook notes.m | This function documents the derivation of
the rigid mass transfer matrix that | use in my analysis. | had some questions concerning the rigid mass trans
matrix that Dr. Book gives in his thesis and in a chapter of a book he is writing on flexible robotics. | believe tha
the derivation included in this file is correct and it is the one | am moving forward with. It agrees fairly closely,
but not completely, with the derivation in Dr. Book’s lab manual. There are some significant differences betwee
this derivation and the results in Dr. Book’s thesis.

This derivation is the basis of the transfer matrix utility functiggidmasstm.m  which is in therwk_
matlab_functions directory.

Verbatim Matlab Text

[Rmatrix deriv_wjb notes verb apndx.pdf

3.1 Free Cantilever Analysis

3.1.1 Natural Frequency Comparison

Results from the tranfer matrix method:
f1 =6.302 Hz (3.96)

fo = 39.494 Hz (3.97)
Comparison with exact solution: The exact solution comes from solving
cos Fcosh = —1 (3.98)
Using the natural frequencies from the transfer matrix to evaluate this expression gave

cos 3 cosh 3 = —1.0000000000 (3.99)

cos 3 cosh 3 = —1.0000000000 (3.100)

3.1.2 Mode Shape Comparison

Figure 3.4 overlays the first mode shape from the transfer matrix with the exact solution.[Figure 3.5 overlays tt
second mode shape from the transfer matrix with the exact solution. The agreement for both mode shapes is gc
This gives a high degree of confidence that the transfer matrix method for a cantilever beam has been correc
implemented in Matlab.
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Figure 3.4: Comparison of the first mode shape from the transfer matrix method and the exact solution for
a free cantilever.
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Figure 3.5: Comparison of the second mode shape from the transfer matrix method and the exact solution
for a free cantilever.
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E.0.3 Matlab File Used

Matlab File Summary

This file uses the Matlab fiffreecantilever wnums.m | To verify that my transfer matrix code is working
correctly, | compared results between the transfer matrix method and other methods as | went along. The first s
was to compare the results for a single cantilever beam element with the exact solution (from Meirovitch). That
what this file does. Natural frequencies and mode shapes are compared between the transfer matrix method
the exact solution (since the transfer matrix is and exact solution, this is just a verifcation of the code and that
am correctly implementing the method).

Verbatim Matlab Text

[freecantilever wnums verb apndx.pdf |

3.1 Cantilever with Point End Mass Analysis

3.1.1 Natural Frequency Comparison

Results from the tranfer matrix method:

fi =2.5754 Hz (3.101)

fo = 28.888 Hz (3.102)
Results from the assumed modes method:

f1 =2.5754 Hz (3.103)

fo = 28.888 Hz (3.104)

3.1.2 Mode Shape Comparison

Figure 3.6 overlays the first mode shape from the transfer matrix method and the assumed modes method. Fig
[3.7 overlays the second mode shape from the transfer matrix method and the assumed modes method.
agreement for both mode shapes is good. This gives a high degree of confidence that the transfer matrix metl
for a cantilever beam has been correctly implemented in Matlab.

3.2 Cantilever with Real End Mass Analysis

3.2.1 Natural Frequency Comparison

Results from the tranfer matrix method:
f1 = 2.2386 Hz (3.105)

fo = 19.346 Hz (3.106)
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Figure 3.6: Comparison of the first mode shape from the transfer matrix method and the assumed modes
method for a cantilever with a point mass on the end.
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Figure 3.7: Comparison of the second mode shape from the transfer matrix method and the assumed modes
method for a cantilever with a point mass on the end.

53



CHAPTER 3. TRANSFER MATRIX ANALYSIS May 1, 2004

0 T T T T
Transfer Matrix
—— Assumed Modes

-0.05¢ |
()
©
2

S -0.1f .
£
(4y]
Q
n
C

8_0'15’ 1
(2]
()
o

-0.2r 1

-0.2 : : : :
0 50 1 2 3 4 5

Position along the beam x(m)

Figure 3.8: Comparison of the first mode shape from the transfer matrix method and the assumed modes
method for a cantilever with a real mass on the end.

Results from the assumed modes method:

f1 = 2.4485 Hz (3.107)
f, = 28.918 Hz (3.108)

3.2.2 Mode Shape Comparison

Figure] 3.8 overlays the first mode shape from the transfer matrix method and the assumed modes method. Fig
[3.9 overlays the second mode shape from the transfer matrix method and the assumed modes method. Note
the rotational kinetic energ of the end mass was not included in the assumed modes method analysis.
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Figure 3.9: Comparison of the second mode shape from the transfer matrix method and the assumed modes
method for a cantilever with a point mass on the end.
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F.0.3 Matlab File Used

Matlab File Summary

This file uses the Matlab fileantileverwrealmass wnums.m | As a next step in complexity, this file uses

the transfer matrix method to find the natural frequencies and mode shapes of a cantilever beam with a real m
on the end (i.e. one with non-zero length and second moment of ineteria). The results from the transfer mat
method are compare to results from the assumed modes method.

Verbatim Matlab Text

[cantirealmass wnums_verb apndx.pdf
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Chapter 4

Transfer Matrix Utilities

A fair ammount of time this semester was spent developing Matlab code for straightforward implemenation c
the transfer matrix method for arbitrary systems. | hope these functions will be able to be used for some time in
the future and built upon by others. | tried to make them able to handle as general a tranfer matrix problem

possible.
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G.1 Matlab Files Used

G.1.1 Main Matlab File

The main Matlab file ifmsystem.m | This function attempts to find the transfer matrix for an arbitrary system.
This function is intended to be called by fminsearch to find the natural frequencies. To accomplish this, the fir:
input is omega and the additional inputs are for discribing the system. The second input is a cell array of string
containing the transfer matrices in the order they are to be multiplied togethe{’8'¢éR’,/B’/B'/R’ }). The

third input is a cell array of the parameters corresponding to each transfer matrix.

G.1.2 Additional Matlab Files

[beammodeshape.m]|

This function determines the mode shape of a beam element by callingpagdetm.m function for
varying lengths from x=xstep to L. Apparently, | forgot that | wrote this and wrote the new funciton
tmbeammodeshape.m to do basically the same thingmbeammodeshape.m is very similar but is newer
and should be used in stead of this one.

peamim.m

This function returns the transfer matrix for a beam element. The inputs are the frequency, a cell array of syste
parametersfL, E, |, mu}, and a cell array containing optoinal arguments. Right qéaug=1'} is the only
supported optional argument, which when evaluted would specify that an augmented matrix should be return
for use in determining the force response of dynamic systems.

orcetm.m

This function returns an augmented transfer matrix used as input point for external forcing on a dynamic sy:
tem. The output is an identity matrix augmented with a column of the forced values and a fifth row that is
(0000 1]

[frgidmasstm.m |

This function returns the transfer matrix for a beam element. The inputs are the frequency, a cell array of syste
parameterséLr, mr, Ir, h} (where h is the distance from the RIGHT or far side of mass to the center of gravity),
and a cell array containing optoinal arguments. Right dtaug=1'} is the only supported optional argument,
which when evaluted would specify that an augmented matrix should be returned for use in determining the for
response of dynamic systems.

For a sketch of the rigid mass elements with the various parameters on it or to see a derivaiton of this matri

please refer tkmatrix_deriv_DrBook _notes.m andRmatrix_deriv_wjb_notes.tex

This matrix transfers from the left to the righthand side of a rigid mag$o zr according tozr = Rz, as
in the derivation inRmatrix_deriv_DrBook_notes.m which outputs the fildRmatrix_deriv_wijb_
notes.tex
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tmbeammodeshape.m |

This function calls the beamtm function with length varying from L/numx to the total length of the beam elemen
at numx increments. Based on zL, the boundary conditions at the left end of the beam, and the beam trans

matrix calculated at the current length increment, the response at numx points along the length of the beam
found.

beamparams needs to be in the same order as the sysparams argument of the beamtm.m func
(L=sysparam§l}; E=sysparami@}; I=sysparam§3}; mu=sysparamgi};).

G.1.3 \Verbatim Matlab Files

tmutilies verb apndx.pdf |
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