Chapter 1

System ID with 2 Flexible Base Modes

Performing system identification on Bode data of SAMII operating around a nominal position
was a significant part of what | did this semester. Not only did curve fitting take up a significant
amount of my time, but it provided me with models that | performed root locus analysis on (root
locus analysis was another significant portion of my research this semester).

At the start of the semester, | thought that only the first two modes of the flexible base were
significant contributors to SAMII's base vibration. Toward the end of the semester | designed a
controller that placed the poles for the first two modes of the base at higher damped locations.
This controller made the third mode unstable which lead me to include the third mode in my
curve fitting. System ID that includes the first three modes is document thoroughly in JHapter 9.
Since that documentation is very thorough, | include only an overview of the curve fitting done
with only two modes.

Sectior] 1.l describes the models used for system id in this chapter.

Sectior] 1.P shows the results of curve fitting where | was manually tuning coefficients through
a trial and error process (this seemed like an easy way to get an approximate model at the time).

Section] 1.B shows the results of my first optimization curve fitting. The error function that
| am seeking to minimize in this section does not include any phase error (the 3 mode curve
fitting of Chaptef P does). The error is the sum of the squared magnitude error in dB for both the
actuator and the flexible base.

Sectior] 1.4 compares the results from the manual curve fitting to the optimization results and
overlays the Bode plots.

1.1 Transfer Function Models

The curve fitting done in this chapter uses the following model for the actuator:
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and this model for the flexible base:

T _ Biwist 4 Byw?s? (1.2)
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1.2 Manual Curve Fitting
The coefficients from my manual curve fitting were
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Figure 1.1: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2

angular position.
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Figure 1.2: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration.
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1.3 Optimization

The results shown in equati¢n 1.4 and Figyre$ 1.3[and 1.4 are for an optimization done over a
frequency range of 1-12Hz and with an error function that minimizes the sum of the squared
magnitude error in dB for both the actuator and the flexible base. This optimization uses a sixth
order model with ans* term in the numerator of the transfer functiénd. This fit does not
consider phase error at all. This fit includes only the first two modes of the flexible base.

The output coefficients from the optimization were
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Figure 1.3: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2

angular position.
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Figure 1.4. Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration.
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Figure 1.5: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2

angular position.

1.4 Overlaying Manual Curve Fits with Optimization Results

Figureq 1.5 anfl 1.6 overlay the results from my manual curve fitting with results from my first

optimization attempt.

Comparing the results of my manual curve fitting effort to the optimization result gives

wherez,, refers to the manual curve fit ang refers to the optimization result.
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Figure 1.6: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration.

A.1 Matlab Files Used

A.1.1 Main Matlab File

The main Matlab file ifplottwobode.m | This file fills in a gap in my notebook for Fall 03 by
formally documenting and comparing the results of my initial curve fitting at the beginning of
the semester where | was tuning the parameters by hand and by trial and error to the results of
my initial optimization work. The optimization was done over a frequency range of 1-12Hz and
the error function is the sum of the squared magnitude error in dB for both the actuator and the
flexible base. This optimization uses a sixth order model witk‘aerm in the numerator of the
transfer functioni /6. This fit does not consider phase error at all. This fit includes only the first
two modes of the flexible base.

This file calls the fileload_data.m andgenbodeplots_ s4m2.m  which depends on
the functionsamiimodelss4m2.m

A.1.2 Additional Matlab Files

[genbodeplots ~ _s4mZ.m|

This file generates the bode plots for manual curve fitting results and/or my first optimization
work (depending on the setting odsenum). This file is called byplottwobode.m


SupportFiles/MatlabFiles/plottwobode.m
SupportFiles/MatlabFiles/genbodeplots_s4m2.m
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[oad data.m |

This file loads experimental swept and fixed sine data. The swept sine data is loaded into global
variables used by the curve fitting cost function. This file is calleglbjtwobode.m

[samiimodels4dmZ.m |

This function is called bygenbodeplots_s4m2.m . This function takes a vector of co-
effiecients as an input and outputs the bode magnitudes and phases for both the actuator and
flexible base models.

coeffsin=varargif1};

varargouf 1}=actfit_mag;
varargouf2}=basefit_mag;
varargouf3}=actfit_ph;
varargouf4}=basefit_ph;

A.1.3 Verbatim Matlab Files

[comparing sdmZ fits combined editted verb apndx.pdf
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SupportFiles/MatlabFiles/load_data.m
SupportFiles/MatlabFiles/samiimodels4m2.m

Chapter 2

Root Locus Analysis: s* Model for Flexible
Base TF

Root locus analysis of the linearized system models that came out of my system identification
efforts made up a significant chunk of the work done this semester. This analysis provided a
way to simulate modifications to the system that would have taken significant time and effort to
implement. This analysis shows that these modifications would not have solved the problems we
were having. So, this analysis saved me a lot of time that would have been wasted. The results
of this work have been accepted as a paper for the 2004 IEEE Aerospace Conference in Big Sky,
Montana.

This analysis was all done twice after a necessary change in the model was discovered.

If the system is modeled as a 2DOF system with position as the output and force as the input
and if force is proportional to angular acceleratiéiy, then a transfer function for the system
would be

B L B L
£: 1<Z51( ) S+ 2¢2( ) 5 (2.1)
0  s24+2Qwis+wi 524 20wss + wj
| initially fit this model to the input/output data for the system and it did not look quite right.
The phase was off by 18@rom what | expected. | said to myself that | was actually measuring

acceleration rather than position so that the model should be

@ _ SQBl(bl(L) 4 S2BQ¢2<L) (2 2)
é 52 + 2€1(JJ1$ + w% 52 -+ 2€2W23 + w% .

This model was able to fit the data fairly well and | proceeded to perform the root locus analysis
included in Chaptér|3. | refer to this model as #iamodel throughout this work.

Later on it dawned on me that | have anotk&term missing from my model. Not only am |
measuring acceleration rather than position, but | am measuring angular pagjtrathér than
angular acceleratiorf]. So the model | finally decided upon is

i s'Bigu(L) n s'Byg(L) (2.3)
0 52 -+ 2C1(A)1$ + UJ% 82 -+ 2C2W25 + W% .
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Figure 2.1: Root locus of the mass damping system without a lowpass filter or any other
modifications.

(I refer to this as the* model throughout this work). While this portion of the system is none
causal, the transfer function féyv is relative degree 2 so that the overall system is relative
degree zero.

The model change does not change the interpretation of the root locus results and the results
from the old model are included in Chapi¢r 3 for comparison.

Chaptef # overlays Bode plots from each of the two models. The results are somewhat incon-
clusive. Each model can do a decent job of recreating the system dynamics over the frequency
range considered (though the coefficients for the two models vary significantly). Bode data would
need to be taken over a wider range to show which model correctly predicts the high frequency
roll off (or lack there of) for the system. This higher frequency data is difficult to obtain because
of the band width of the hydraulic actuator.

Figure[2.] shows a root locus for the mass damping control system without a low pass filter
or any modifications. This system is unstable for most valu€s,ofThere is no value fok, for
which this system has better vibration response than the system without acceleration feedback.

One interesting thing to note about this system is that it is relative degree two, however as
K, — oo, two of the poles are approachidgc along the real axis. This is the result of the
coefficient B, in the flexible base transefer function (equafiorj 2.4) being negative. This makes
all of the numerator coefficients in the tranfer functiofil negative, resulting in a root locus with
an angle criterion of Orather than 180

Figure[ 2.2 zooms in on the portion of the locus near the origin.
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Figure 2.2: Root locus of the mass damping system without a lowpass filter or any other
modifications. (Zooming in on Figure[2.].)

T _ : B¢ (L) - Bapo(L) (2.4)
0 s2+2Gwis + w82+ 20was + w3

With B, negative, it seemed necessary to investigate the system with th&gaiegative as
well. The root locus for the unmodified system with), negative is shown in Figufe 2.3. This
system is also unstable for most valueggfand there is not value fdk, for which this system
has a better vibration response than the open loop system.

With the system not exhibiting better performance than the system without acceleration feed-
back for any values (positive or negative)gf, it seemed necessary to investigate the potential
improvement in system performance that could be attained if either of the two deviations from
the theoretical mass damping system could be fixed.

Figure[ 2.4 zooms in on the portion of the locus near the origin.

Figured 2.b anfl 2|7 show the changes to the root locus resulting from eliminating the phase
difference between the pure integrator model and the experimentally determined actuator transfer
function near the second natural frequency of the base. This root locus simulates the system
response if the actuator was actually a pure integrator. This eliminates one second order zero
and one zero order pole from the root locus. At first glance it would appear that this has simply
eliminated the pole/zero pairs-aB.77+62.7;. Actually, this has eliminated the zeros-a3.77+
62.77 and the poles at2.21 +50.75. The poles at-3.77 + 62.74 then follow trajectories similar
to those that the poles at2.21 + 50.7; used to follow in the system shown in Figufes|2.1 and
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Figure 2.3: Root locus of the mass damping system without a lowpass filter or any other
modifications. The gainK, is negative.
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Figure 2.4: Root locus of the mass damping system without a lowpass filter or any other
modifications. The gaink, is negative. (Zooming in on Figurd 2.B.)
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Figure 2.5: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed).

2.3.

The similarities between Figureés P.1 gnd|2.5 and between Figures 2[3 and 2.7 lead to the
somewhat counterintuitive conclusion that thé 8ference between expected and actual phase
near the second natural frequency of the base does not have a significant impact on the stability
of the system. The result seems counterintuitive from a vibrations stand point: if the system
is supposed to generate interaction forces the simulate damping, @h86e error should be
significant.

Figured 2.p anfl 2.11 show the effects on the root locus of switching from accelerometers to
sensors that could somehow sense the position of the base. If suitable sensors could be found,
this would eliminate another difference between the actual system and the theoretical ideal that
this system was designed around. While this difference again seems intuitively significant, the
effects of installing base position sensors on the root locus are not obviously beneficial. This
change eliminates a pair of zeros at the origin and changes the system from relative degree one
to relative degree three. Figyre 2.9 shows the root locus with §gipositive and Figurg 2.11
shows the root locus witk', negative. In both cases, the system is unstable for most valués of
and no value of<, can be found for which the vibration response of the system is significantly
improved over the system without vibration feedback.

Figureq 2.18 anfd 2.15 show the root locus for the system with both of the previously men-
tioned deviations from the ideal corrected (the actuator is a pure integrator and the system has

15
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Figure 2.6: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). (Zooming in on Figure 2.5.)
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Figure 2.7: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). The gaii’, is negative.
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Figure 2.8: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). The gaif, is negative. (Zooming

in on Figure[2.7.)

18



CHAPTER 2. ROOT LOCUS ANALYSIS: S* MODEL FOR FLEXIBLE BefieTitber 30, 2003

80

E

60

I
o
T

N
o
T

Imaginary
o

|
A
o
T

|
[o2}
o
T

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 *
~30 -20 -10 0 10 20 30

e

Figure 2.9: Root locus of the mass damping system with a base position sensor but without
a lowpass filter.
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Figure 2.10: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. (Zooming in on Figure[2.9.)
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Figure 2.11: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. The gaink, is negative.
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Figure 2.12: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. The gaink, is negative. (Zooming in on Figurg 2.1}1.)
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Figure 2.13: Root locus of the mass damping system with a base position sensor and second
order dynamics removed from actuator but without a lowpass filter.

base position sensors). The system is still unstable for most valu€safid the performance is
still not improved over the system with no active vibration suppression.

Figure 2.1} shows the root locus of the system with the current design for a low-pass filter on
the accelerometer signal (&“rder Butterworth filter with a cutoff frequency of 2Hz).
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Figure 2.14: Root locus of the mass damping system with a base position sensor and second
order dynamics removed from actuator but without a lowpass filter. (Zooming in on Figure

2.13)
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Figure 2.15: Root locus of the mass damping system with a base position sensor and sec-
ond order dynamics removed from actuator but without a lowpass filter. The gaink, is
negative.
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Figure 2.16: Root locus of the mass damping system with a base position sensor and sec-
ond order dynamics removed from actuator but without a lowpass filter. The gaink, is
negative. (Zooming in on Figurg 2.1p.)
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Figure 2.17: Root locus of the base system with a lowpass filter.
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Figure 2.18: Root locus of the base system with a lowpass filter. (Zooming in on Figure

2.17.)
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B.1 Matlab File Used

B.1.1 Matlab File Summary

This file uses the Matlab fi[docus full_story s 4 callfunc.m | This file generates
bode plots for many of the system modifications considered (accelerometers vs. base position
sensors, removing unmodeled actuator dynamics, etc).
| believe this file was eventually replaced bgll_rlocus_pseudos_s_4.m , which
allows for easier comparing of one system against another.
The transfer function fo¥ /0 used in this file has ast term in its numerator.

B.1.2 Verbatim Matlab Text

[locus ftull story callfunc editted verb apndx.pdf
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SupportFiles/MatlabFiles/rlocus_full_story_s_4_callfunc.m

Chapter 3

Root Locus Analysis: s Model for Flexible
Base TF
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Figure 3.1: Root locus of the mass damping system without a lowpass filter or any other
modifications.
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Figure 3.2: Root locus of the mass damping system without a lowpass filter or any other
modifications. (Zooming in on Figure[3.1.)
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Figure 3.3: Root locus of the mass damping system without a lowpass filter or any other
modifications. The gaink, is negative.
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Figure 3.4: Root locus of the mass damping system without a lowpass filter or any other
modifications. The gaink, is negative. (Zooming in on Figurg 3.3.)
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Figure 3.5: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed).
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Figure 3.6: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). (Zooming in on Figure 3.5.)
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Figure 3.7: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). The gaii’, is negative.
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Figure 3.8: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). The gaii, is negative. (Zooming

in on Figure[3.7.)
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Figure 3.9: Root locus of the mass damping system with a base position sensor but without
a lowpass filter.
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Figure 3.10: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. (Zooming in on Figure[3.9.)
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Figure 3.11: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. The gaink, is negative.
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Figure 3.12: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. The gaink, is negative. (Zooming in on Figureg 3.1]1.)
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Figure 3.13: Root locus of the mass damping system with a base position sensor and second
order dynamics removed from actuator but without a lowpass filter.

38



CHAPTER 3. ROOT LOCUS ANALYSIS: S*> MODEL FOR FLEXIBLE Begfentber 15, 2003

80

60\—’*

40

20

Imaginary
=
a

10 20 30

|
[€)
o
|
N
o
|
IR
o
Dof----—-—-—-—--—-—-

Real

Figure 3.14: Root locus of the mass damping system with a base position sensor and second
order dynamics removed from actuator but without a lowpass filter. (Zooming in on Figure

B.13)
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Figure 3.15: Root locus of the mass damping system with a base position sensor and sec-
ond order dynamics removed from actuator but without a lowpass filter. The gaink, is
negative.
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Figure 3.16: Root locus of the mass damping system with a base position sensor and sec-
ond order dynamics removed from actuator but without a lowpass filter. The gaink, is
negative. (Zooming in on Figurg 3.1p.)
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Figure 3.17: Root locus of the base system with a lowpass filter.
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Figure 3.18: Root locus of the base system with a lowpass filter. (Zooming in on Figure

B.17.)
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Figure 3.19: Root locus of the base system with a lowpass filter. The gaik, is negative.
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Figure 3.20: Root locus of the base system with a lowpass filter. The gaid, is negative.
(Zooming in on Figure[3.19.)
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Figure 3.21: Root locus of the base system with a lowpass filter with a corner frequency
of4Hz.
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Figure 3.22: Root locus of the base system with a lowpass filter with a corner frequency
of4Hz. (Zooming in on Figure[3.2].)
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Figure 3.23: Root locus of the base system with a lowpass filter with a corner frequency
of4Hz. The gain K, is negative.
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Figure 3.24: Root locus of the base system with a lowpass filter with a corner frequency
of4Hz. The gain K, is negative. (Zooming in on Figurd 3.23.)
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Figure 3.25: Root locus of the base system with a bandpass filter.
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Figure 3.26: Root locus of the base system with a bandpass filter. (Zooming in on Figure

B.23.)
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Figure 3.27: Root locus of the base system with a bandpass filter. The galty, is negative.
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Figure 3.28: Root locus of the base system with a bandpass filter. The galkt, is negative.
(Zooming in on Figure[3.27.)
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C.1 Matlab File Used

C.1.1 Matlab File Summary

This file uses the Matlab fildocus full story s 2 callfunc.m | This function gen-
erates several root loci simulating various system modifications for SAMII (base position sensing,
removing actuator dynamics, etc.).

The transfer functiori /0 has ans? term in its numerator.

This file was replacedocus_full_story.m

C.1.2 \Verbatim Matlab Text

[Mocus_full_story callfunc s 2 verb apndx.pdf
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Chapter 4

Comparing s and s* Models for the
Flexible Base TF

The results reported here are from fitting the data with a model that h&s@m in the numera-
tor of the transfer functioti /6. Figures 4.][-4]3 compare the results of curve fitting SAMII's Bode
data with a phase weight of 0.1 with models that hat/@nd s* terms in the transfer function
numerator £ /6).

The results of this comparison are somewhat inconclusive: both models are able to recreate
the system dynamics over the frequency change considered. [Fighre 4.3 shows that over the
frequency range from 20-40Hz, té model seems to better capture the lack of roll off. This
is a small frequency range however and it is near the end of the bandwidth of the input swept
sine signal. Also this is near the end of the useful bandwidth of the hydraulic actuator - so it is
difficult to excite the system out past this range where the two models begin to differ significantly
because of the roll off of the? model.

Curve fitting criteria:

Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of
500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Matlab convergence criteria. The percent error change on the last loop was -5.4434e-
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Figure 4.1: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.1.
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Figure 4.2: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase

weight for this optimization was 0.1.
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Figure 4.3: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 voltage and the output is base acceleration. The phase weight for

this optimization was 0.1.
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010% and the percent change in the coefficents was

[ 5.86829¢ — 005 ]
—3.81885¢ — 005
0.000239918
—9.71491e — 006
0.000186499
—9.51278¢ — 005
%Ar = | 2.81043¢ — 007 (4.1)
0.000661983
—1.32802¢ — 005
—0.000149074
0.000103456
—1.03743¢ — 005
| —8.48818¢ — 005 |

The output coefficent values were

29.1021 ] K,
55.7324 Wy
0.202146 G
63.3685 W,
0.084229 .
158.514 T
T = 10.7661 where T = | w 4.2
0.0249317 G
158.082 ws
0.0284088 (3
0.168324 B
—8.02654 By
| —5.77622 | | Bs |

These plots were generated by the Matlabrfilen_s2 bode fit 12 03_03.m , Which
callsthefiledoad data s2 m3 12 03 03.m ,run_optim_s2 m3 12 03 03.m ,and
genbodeplots s2 12 03 03.m . The optimization uses the error fdamiierr.m  which
depends on the model fisamiimodel.m . The curve fit results are written to the ascii file
bodefit s2_12 03 03 pw=0_1.txt .

All of these files are in the foldeZ:\ryan\GT\Research\SAMII\curve_fitting\
Nov03\s2_fitting
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D.1 Matlab Files Used

D.1.1 Main Matlab File

The main Matlab file ifnain_sZ2 bode fit 12 03 03.m | This file is used to demonstrate
why the numerator of the transfer function between base acceleration and theta (angular position)
needs an* term in the numerator. This is done by curve fitting a model with only%aerm in
the numerator and comparing the curve fit to the experimental Bode data.
This file calls the filedoad data_s2 m3 12 03 03.m , run_optim_s2 m3 12
03_03.m andgenbodeplots_s2 12 03_03.m

D.1.2 Additional Matlab Files

[genbodeplots ~ _sZ_12_05_0Us.m|

This file generates the bode plots for one set of curve fitting results (i.e. one phase weight). This
file is called bymain_s2_bode_fit 12 03_03.m
Results from fits done with? ands* terms in the numerator @f/6 are overlaid.

[oad & T MITZ 03 03]

This file loads experimental swept and fixed sine data. The swept sine data is loaded into global
variables used by the curve fitting cost function. This file is callednlayn_s2_bode_fit_
12 03_03.m .

run _optim _s2_ms12_05_05.m|

This function runs the Matlab function fminsearch for a given set of optmization paramters (max-
imum nmber of iterations, etc.) and then outputs the results to a text file. This function is called by
main_s2 bode fit 12 03 03.m and uses the fileamiierrs2.m  as the cost function
for fminsearch.

The model used in the optimization hasrterm in the numerator of the transfer function
betweeni /6.

[Ssamierrse.m |

This function defines the cost function for the curve fit. The cost function is the sum of the
squared magnitude error in dB plus a phase weighting term (scalar) times the sum of the squared
phase error in degrees.

errout=samiierrs2(coeffsin,phaseweight)

The first input (coeffsin) is a vector of input coeffiecients. The second input is the phase
weight.
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This function is called byun_optim_s2 m3 12 03 04.m  and calls the functioeamiimodels2.
m which outputs the bode magnitudes and phases for both the actuator and flexible base models
based on the vector of input coeffiecents.

[Ssamimodelsz.m |

This function is called bgamiierrors2.m andgenbodeplots_s2 12 03 03.m . This
function takes a vector of coeffiecients as an input and outputs the bode magnitudes and phases
for both the actuator and flexible base models.

This function has ar? rather thars* term in the numerator of the transfer function between
base acceleration and theta (angular position) for comparison purposes.

coeffsin=varargif1};

varargouf1}=actfit_mag;
varargouf2}=basefit_mag;
varargouf3}=actfit_ph;
varargouf4}=basefit_ph;

[samimodels4.m |

This function is called bgenbodeplots_s2 12 03 03.m . This function takes a vector of
coeffiecients as an input and outputs the bode magnitudes and phases for both the actuator and
flexible base models.

This function has ar* term in the numerator of the transfer function between base accelera-
tion and theta (angular position) for comparison purposes.

coeffsin=varargif1};

varargouf1}=actfit_mag;
varargouf2}=basefit_ mag;
varargouf3}=actfit_ph;
varargouf4}=basefit_ph;

D.1.3 Verbatim Matlab Files

[s2 vs s4 curvefitting verb apndx.pdf
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Chapter 5

State-space Representation with Base
Acceleration and Angular Position Outputs

A state-space representation of the system was needed to perform pole placement design. This
was done by starting with the transfer function model of the system and working toward a con-
trollable canonical form.

This manipulation of the system model was done twice: this chapter performs that analysis for
one accelerometer output attached at the end of the arm. Chapter 7 performs this same analysis
but with two accelerometers used to provide modal feedback.

5.1 Transfer Function Manipulation

The transfer funciton fof /d can be written as

0 wa? (8% + 2Cowas + wo?) T (5.1)
d  swy? (82 + 2Cqwes + wa?) (s +7) '
The transfer function foi: /6 can be written as
@ stBjw,? 5% Byw,?
_ 1W1 i 2W2 (5.2)

0 2+ 2Ciwis +wi? 82 4 2Gwes + we?

multiplying equation 5.2 by equatign 5.1 allows the transfer function betvigérno be written
as

B (we?s® 4+ 2wr Qi s 4+ wi’ws?) 8 By + (wiwa? 4 wi®s? + 2w ?Gwss) 8° By ) wa?Ts
d (s2 4 2Ciw1 S + wi?) swo? (82 + 2Cqwas + wy?) (s + 1)

(5.3)

For the sake of the state-space representation, we will use the following common denominator
for the tranfer functions

D = (32 + 2Gwys + wlz) Swo? (52 + 2qwqs + wdQ) (s+ 1) (5.4)
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The numerator and denominator of the transfer functichwould need to be mulplied by the
term

D
— = 82 + 2C1a)1$ + W12 (55)
Dy

Expanding the denominator gives
D = wy?s% + <2w22C1w1 + wolT + 2w22ded> s°
+ (4w22C1w1ded + 2w22§1w17' + wi2we? + wowy? + 2w22dedT) st
+ (2w22w12ded + W w1 2T + WYPWT + 2w Wy’ + 4w22C1w1ded7') s
+ (2w2?wi X Cawat + wwi*w® + 2wr*Gunwd’T) 87
+woswi lwgT (5.6)

Expanding the numerator féy/ d gives

Ny = s*rw,® + <2de2C1w1 + 27'wd2§2w2) s3
+ (w12wd27' + 4de2C2w2C1w1 + wfwfr) 52
+ (27’wd2w12C2w2 + 2w22§1w1wd27) s
+w22w12wd27 (57)
Expanding the numerator far/d gives
Nx = (Blwlz -+ BQCUQQ) wd27'36
+ (2&)22(:1(,0132 + 2(,()12(:2&}231) wd27'55
+ (B2w22w12 + Blw12w22) wglTst (5.8)

5.2 Controllable Cannonical Form
For a system with the transfer function

Yy  bps"+ bp_15" 1 4 -+ bys+ by

=z : (5.9)
U S+ 18"+t ars+ag
the controllable cannonical realization would be
0 1 0 0
A=| + = 0 (5.10)
() Ce () 1
—ap —a —Ap—1
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0
B— | 5.11
. (5.11)
1
C=|bo—buag bi—buar -+ by —Dbpan 1 | (5.12)
D=b, (5.13)

For this system = 6 and the coefficients of the denominator polynomial are

ag =0 (5.14)

a1 = Wolwi w T (5.15)

s = 2w w1 2Cqwat + wowi 2wy? + 2w CiwiwgAT (5.16)

ag = 2wo’w12Cawa + W w1 T + WPwAT + 2w Gwiwg® + dwy? G CawaT (5.17)
ay = 4wy (w1 Cawg + 2wl T 4 wi2we? + wowy® + 2w CawyT (5.18)

a5 = 2wy Crwy + wWe T + 2wy Wy (5.19)

ag = Wy’ (5.20)

becauseis # 1 all of the coefficientsq,, andb,) must be divided by:s before being plugged
into the matix representation.
With 6 as the output, the coefficients of the numerator polynomial are

bo = wo w; 2wy T (5.21)

b1 = 27wg w12 Cows + 2wo Gl wg? T (5.22)

bg = w12wd27 + 4de2C2w2C1w1 + w22wd27 (523)
by = 27wy Clwr + 27w Cows (5.24)

by = Twy’ (5.25)

With # as the output, the coefficients of the numerator polynomial are

bp =0 (5.26)

by =0 (5.27)

by =0 (5.28)

bs =0 (5.29)

by = Twy? Bows w12 4+ Twy? Biw; 2ws? (5.30)
by = 2wa?Twy? G By + 2w Twi 2Cows By (5.31)
be = wa T B1wi? + wy T Bowy? (5.32)
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Finding the transfer functio6/d from the matrices according to

Z: C(sI—A)'B+D (5.33)

gives

I 2 2 2 2

o _ (8% 4+ 2Cwas + wo®) Twy (5.34)

d  wa? (5% + 25Cuwa + wg?) (s +7) s
giving us back what we started with and proving that the state-space representation is correct.
Similarly the transfer functiori /d from the matrices is

T (87 (82we? + 2Ciwr swe? + wiPwe?) By + 8% (wi%we? + 2w (aswy + s%wi?) By) waTs
d Swo? (8% 4 25Cqwq + wa?) (s + 7) (%2 + 25C w1 + wi?)
(5.35)
which is exactly the transfer function in equatjon|5.3. The state space matrices are given by
0 1 0 0
0 0 1 0
0 0 0 1
A =
0 0 0 0
0 0 0 0
0 —wilwlr —2oJ22w1QdedT—m2w222wd2—2w2241w1wd2‘r —2w22w1Qded—w?mQT—wQdeQ‘g—%zQlewdQ—4w22C1w1€dw
L w2 w2
(5.36)
B w12wd27' 27’wd2w12C2w1j3w22glw1wd2'r w12wd27+47wd2§)22212g“1w1+w22wd2'r
C - 0 (wdQ‘rB1w12+wd2732w22)w12wd27 (wd2731w12+wd2732w22)(2w22w1QdedTerl2w22wd2+2w22(1w1wd27)
L o wo? - wot
(5.37)
0
D= wg?TBiw1 2 +wg?TBowa? (538)
w22

This state space system representation is output to the iefdecelwnums.m
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E.1 Matlab Files Used

E.1.1 Main Matlab File

The main Matlab file igcfaccel.m | This file starts with the transfer functions for the hydraulic
actuator and base acceleration including the first two modes of the flexible base. From there it
derives a controllable canonical state space representation of the system. This file outputs the
results of its derivation to a LaTeX file for easy readability. The output fitzfaccel.tex

The transfer functions used in this derivation includesarterm in the numerators of the
transfer functions between the base accleration and the theta input (angular positianyji.e.

It also creates a Matlab m-file that defines the state space matrices in terms of the variables
used in this derivation. Editting this file so that it begins with numerically defining each of these
variables (i.e. wl1=2*pi*10), gives an m-file that has the properly defined state space representa-
tion of the system. The output m-file generated by this ficfeccelwnums.m  and the edit-
ted version i€cfaccelwnums_editted.m which actually calls the fileurvefitparams_

s 4 sixth  where the parameters are all defined.sy

E.1.2 Additional Matlab Files

[CClaccelwnums.m |

This file was created by the m-file @yan\GT\ResearchSAMII \ statespacgcfaccel.m and it
contains a CCF state-space model for SAMII based on SISO transfer functions about a nominal
operating point.

E.1.3 Verbatim Matlab Files

[ccfaccel verb _apndx.pdf |

60


SupportFiles/MatlabFiles/ccfaccel.m
SupportFiles/MatlabFiles/ccfaccelwnums.m

Chapter 6

Verifying State-space Model by
Comparison with Transfer Function Model

The state-space representation developed in Chaltper 5 is verified by overlaying Bode and root
locus plots from the transfer function based model and the state-space model.
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Figure 6.1: Comparison of Bode diagrams for the hydraulic actuator based on the transfer
function based model and the state space model.
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Figure 6.2: Root locus of the hydraulic actuator from the transfer function based model.
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Figure 6.3: Root locus of the hydraulic actuator from the state space model.
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Figure 6.4: Overlay of root loci of the hydraulic actuator from the transfer function based
model and the state space model.

63



CHAPTER 6. VERIFYING STATE-SPACE MODEL BY COMPARISON WITH TRANSFER
FUNCTION MODEL December 4, 2003

o

=)

2 —20) e —— transfer function
g -~ state space
(o))
©

=

100—————————————

-100F —

Phase (deg)

-200[ \ //’

107" | 1o | “““10 | 10
Freq (Hz)

Figure 6.5: Comparison of Bode diagrams for the flexible base based on the transfer func-
tion based model and the state space model.
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Figure 6.6: Root locus of the flexible base from the transfer function based model.
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Figure 6.7: Root locus of the flexible base from the state space model.
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Figure 6.8: Overlay of root loci of the flexible base from the transfer function based model
and the state space model.
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F.1 Matlab File Used

F.1.1 Matlab File Summary

This file uses the Matlab fifecfaccelwnums editted.m | A porition of this file was created
by the m-fileC:\ryan\GT\Research\SAMIlI\statespace\ccfaccel.m and contains
a CCF state-space model for SAMII based on SISO transfer functions about a nominal operating
point.

This file callscurvefitparams_s_4_sixth to define the system parameters and then
generates bode plots and root loci to verify that the state space system is correctly recreating the
transfer function based system.

F.1.2 Verbatim Matlab Text

[cctaccel tf_ss _comp_verb _apndx.pdt
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Chapter 7

State-space Representation with Two
Accelerometers Providing Modal Feedback

A controllable canonical representation of the system with 2 accelerometers providing modal
feedback is developed in this chapter based on a transfer function based model.

7.1 Transfer Function Manipulation

The transfer funciton fof /d can be written as

0 wi (574 20was +wy’) T 7.1)
d  swy? (82 + 2Cqwas + wa?) (s +7) '
The transfer function fod, /¢ can be written as
@ _ S4Blu}12 (7 2)
0 s%2 + 2Ciw1 S + wi? '
The transfer function foi, /6 can be written as
@ _ S4B2u)22 (7 3)

0 52 + QCQCUQS + w22

multiplying equation 72 by equatin 7.1 allows the transfer function betvgehto be written

as
G stwg? (82 + 2Cowas + wy?) T Biw:

d  swy? (52 + 2Cwas + wa?) (s + 7) (8% + 2C1w15 + w1 ?)

multiplying equation 7]3 by equatin 7.1 allows the transfer function betvgehto be written
as

(7.4)

G _ stwqs T By (75)
d  s(8? 4 2was + wa?) (s + 7) '
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where the termgs® + 2wy s + w»?) andw? have canceled between the numerator and denomi-
nator.

For the sake of the state-space representation, we will use the following common denominator
for the tranfer functions

D = 3@22 (32 + QCdeS + wd2> (S + 7') (82 + 2C1W18 + W12) (76)

The numerator and denominator of the transfer functichwould need to be mulplied by the

term D

_ = 82 —+ 2C1u)18 + w12 (77)
Dy

Similarly, the numerator and denominator of the transfer functigd would need to be mulplied

by the term
D

Dy
Expanding the denominator gives

= Wo? (32 + 2Cwis + w12> (7.8)

D = %2 + <2w22ded + 2w22C1w1 + CU227—) s°
+ (QCUQQCdeT + 4w22(’dwd<’1w1 + wolwy® + 2w227'§1w1 + w22w12) st
+ (0 wd’T + 2w w2 Qwr + waTwi? + 4w CuaTGrn + 2o Cawawn?) 5°
+ (w22wd2w12 + 2w22wd27C1w1 + 2w22dedTw12) s?

+sw22wd27w12 (7.9)
Expanding the numerator féy d gives
Ny = s*wir + <2wd27'§1w1 + 2wd27'C2w2> s?
+ (wd27w12 + 4wd27@w2§1w1 + wz2wd27) 52

+ (2wd27C2w2w12 + QWngd27'C1w1) s

+wowy?Tw 2 (7.10)

Expanding the numerator fgx /d gives
Np = Wa T Bruwr 28% 4+ 2w T Cows Brwr 28 4+ wotw T Biw st (7.12)

Expanding the numerator fgg/d gives

Ngo = 5%wa*T Bowo? + 25°wa T Bowa(wy + 8wy Bowa 2w 2 (7.12)
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7.2 Controllable Cannonical Form
For a system with the transfer function

Y bps" +bp g8 4+ bis + by

u S+ A, 15" ars + ag (7.13)
the controllable cannonical realization would be
0 1 0 0
A= o I (7.14)
—ap —aq —Qp-1
0
B= 0 (7.15)
1
C=[bo—buay b1 —bpar -+ byt —bpan | (7.16)
D =b, (7.17)
For this system = 6 and the coefficients of the denominator polynomial are
ag =0 (7.18)
a1 = WolwytTw,? (7.19)
s = wo wgtwi? + 2wo w AT Cwr + 2wo (waTws (7.20)
a3 = Wolwg T + 2w w*Clwr + walTwr? + 4w CawaTCrwr + 2weCawawn (7.21)
ay = 2wy CawaT + 4wy CuwaCiwy + wolwa® + 2w TG Wy + wywi? (7.22)
as = 2wy Cawq + 2w Clwr + woT (7.23)
ag = wo? (7.24)

becauseis # 1 all of the coefficientsq,, andb,) must be divided by:s before being plugged
into the matix representation.
With ¢ as the output, the coefficients of the numerator polynomial are

bo = w22wd27w12 (725)

bl = QWdQTCQWQCUlQ + 2w22wd27C1w1 (726)

bg = wd27w12 + 4wd27§2w2C1w1 + w22wd27 (727)
b3 = 2wd27C1w1 + 2wd27'C2w2 (728)
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by = Wit (7.29)

With ¢; as the output, the coefficients of the numerator polynomial are

bp =0 (7.30)

by =0 (7.31)

by =0 (7.32)

b3 =0 (7.33)

by = wolwy T Biw? (7.34)
by = 2w TCows Biw, 2 (7.35)
be = wyTBiw; 2 (7.36)

With ¢, as the output, the coefficients of the numerator polynomial are

bp =0 (7.37)
by =0 (7.38)
by =0 (7.39)
b3 =0 (7.40)
b4 = wd2732w22w12 (741)
b5 = 2wd2732w22C1w1 (742)
bﬁ = wd2TBQw22 (743)

Finding the transfer functio6/d from the matrices according to
Z: C(sI-A)"'B+D (7.44)

gives

0 _ (82 + 2Cowas + wo?) wgT (7.45)

d  wa? (5% + 25Cuwa + wg?) (s +7) s
giving us back what we started with and proving that the state-space representation is correct.
Similarly the transfer functiog; /d from the matrices is

G _ walTwi 283 (82 + wo? + 28Cows) By (7.46)
d  wo? (8% +28Cwy + wa?) (s + 7) (82 + 2sCiwy + wi?) '

which is exactly the transfer function in equatjon| 7.4 but withs @ancelled between the numer-
ator and denominator. Similarly the transfer functigpd from the matrices is
G2 Bys’wa’T

d - (5% + 25Cqwq + wa?) (s + 1) (7.47)
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which is exactly the transfer function in equatjon] 7.5 but withs @ancelled between the numer-
ator and denominator. The state space matrices are given by

0 1 0 0
0 0 1 0
0 0 0 1
A=
0 0 0 0
0 0 0 0
0 —w 27'(,4) 2 —wowg?w12—2wrw T¢I w1 —2we%CgwaTw1? —wolwg? T —2wr%wa? 1w —wa?Tw1 2 —4we 2 (gwaT w1 —2wa 2 (W n
L d 1 wo2 wo2
(7.48)
Mo, 2,2 2wiTCwiwr?+2wrwi r¢iwy wg?Twi 2 +wg?rwarwi +wrwy?T
Wy~ TwW1 w32 wo?
C o 0 Wd47'2Blwl4 wd2‘rB1w12(w22wd2w12+2w22wd27§1w1+2w22cdwd‘rw12) wd27B1w12(w22wd27
- wo? wot
2 2,2, .2 2.2 2 2 2 2.2
4 9 2 wq*TBa (w2 wi“ w1 2w wq* T¢1wi +2wa* (qwgTwi wq*TB2 (w2 w1+
i 0 —wg T Bawy — ( 2 ) _(—

D—

0

wg?TBiw:?
wa?

wd2TBQ

w2

This state space system representation is output to the eefiteodalwnums.m
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F.1 Matlab Files Used

F.1.1 Main Matlab File

The main Matlab file iecfmodal.m | This file starts with the transfer functions for the hydraulic
actuator and the first two modes of the flexible base. From there it derives a controllable canonical
state space representation of the system. This file outputs the results of its derivatitaTex

file for easy readability. The output file cefmodal.tex

The transfer functions used in this derivation include‘arerm in the numerators of the trans-
fer functions between the modal acclerations and the theta input (angular positiodt) f)e.

It also creates a Matlab m-file that defines the state space matrices in terms of the variables
used in this derivation. Editting this file so that it begins with numerically defining each of these
variables (i.e. wl1=2*pi*10), gives an m-file that has the properly defined state space representa-
tion of the system. The output m-file generated by this ficisnodalwnums.m and the edit-
ted version i€cfmodalwnums_editted.m which actually calls the fileurvefitparams_

s 4 sixth  where the parameters are all defined.sy

F.1.2 Additional Matlab Files

Ccimodalwnums.m |

This file was created by the m-file @yan\GT\ResearchSAMII\ statespacgcfmodal.m and it
contains a CCF state-space model for SAMII based on SISO transfer functions about a nominal
operating point.

m Iwnums __edi .m

A porition of this file was created by the m-fil&\ryan\GT\Research\SAMIl\statespace\

ccfmodal.m and contains a CCF state-space model for SAMII based on SISO transfer func-
tions about a nominal operating point. This file calisvefitparams_s_4_sixth to de-

fine the system parameters and then generates bode plots and root loci to verify that the state
space system is correctly recreating the transfer function based system.

This file also includes a pole placement controller design for SAMII that was proposed in my
IEEE Aerospace conference paper. The controller is designed in continuous time and does not
include an observer (i.e. all states are assumed measurable and availible for full state feedback -
obviously this is not the case, but it is used as a starting point to verify that the controller would
work well if full state feedback was availible).

F.1.3 Verbatim Matlab Files

[ccfmodal_verb_apndx.pdf |
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Chapter 8

Initial Digital Pole Placement
Controller/Observer Design

This file documents the design of a digital state feedback observer controller for SAMII. The open
loop pole locations for SAMII operating around a nominal configuratio-®0°, 90°, 90°, 0°, 0°, 0°)
are

0
—188.5

| —6.237+ 52.014

Pol =1 6937 — 52.01i

—0.4361 + 10.55i

| —0.4361 — 10.55i |

The poles for a system having unttffeedback and no vibration suppression are

(8.1)

~169.8

—2.986 + 51.564

~2.986 — 51.56i

Poso = ~95.19
—0.4361 + 10.55i

| —0.4361 — 10.55 |

(8.2)

The desired pole locations for the state feedback system being designed are

~169.8

—36.52 — 36.52i

| —36.52 + 36.52i

Pdes = ~25.19
—7.466 — 7.466i

| —7.466 + 7.466i |

(8.3)

Figure 8.1 plots the real vs. imaginary parts of these poles.
Figure] 8.2 plots the real vs. imaginary parts of the digital poles.
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Figure 8.1: Pole locations for the open loop system, a controller for SAMII that has only
0 feedback (i.e. no vibration suppression), and the desired pole locations for a full state
feedback system.
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Figure 8.2: Digital pole locations for the open loop system, a controller for SAMII that has
only ¢ feedback (i.e. no vibration suppression), and the desired pole locations for a full state
feedback system.
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Figure 8.3: Bode plots ford /v and i /6 for the SAMII control system with the desired closed

loop poles.
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Figure 8.4: Bode plots for an observer system designed by pole placement.
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Figure 8.5: Bode plots for an observer system based on Kalman design.
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Figure 8.6: Step response for the state feedback controller observer system with no noise.
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Figure 8.7: Step response for the state feedback controller observer system from a Simulink
simulation with accelerometer noise.
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Figure 8.8: Block diagram of the Simulink simulation.
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Figure[8.3 shows a bode plot féi/v for the closed loop state feedback system with the
desired pole locations.

Figure[ 8.4 shows a bode plot for observer system designed by pole placement.

Figure[ 8.5 shows a bode plot for observer system designed as a Kalman filter.

Figure[8.6 shows the step response of the state feedback controller observer without any noise.

Figure[8.7 shows the step response of the state feedback controller observer system from a
simulation in Simulink with accelerometer noise.

Figure 8.8 shows the block diagram of the Simulink simulaiton.

While the acceleration signals from Figufes| 8.6 8.7 look promising, this controller made
the third mode of the flexible base unstable when implemented experimentally. This third mode
instability lead me to refit a wider frequency range of my bode data, so that the third mode was
included in my models. Once | had the new models, | began redesigning a new controller similar
to this one but considering the third mode.
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G.1 Matlab Files Used

G.1.1 Main Matlab File

The main Matlab file igigital ss 11 05 03.m | This file designs a digital pole placement
state feedback controller/observer for SAMII for a system model with 2 modes of the flexible
base. This controller seems to work well in simulation, though it does have some noise sensitity
concerns. When implemented experimentally, this controller made the third mode of the system
go unstable. This instability is kept in check by the fact that the thrid mode (around 30Hz) is
near the limit of the bandwidth of the system. However, this controller does not really work in
practice. This lead me to curve fit a wider frequency range of my bode data to get a model that
includes the third mode, so that | could design and test a new controller.

It outputs a text file that can be cut and pasted into Simulink that includes digital A,B,C,D,K,
and L matrices. The digital system is found using the Matlab c2d function with the "zoh’ option.
The K and L matrices are found by performing pole placement on the digital system.

The desired pole locations for the state feedback controller were found by first finding the
eigenvalues of the system with unfiyfeedback (this gives good response as far as the speed of
gettingd to the desired position, but it is fast enough to excite significant vibration if nothing
is done to suppression vibration). The real poles of this system with ariggdback are left
unchanged. The complex poles are then moved to a pole location having a specified damping
ratio, but the same magnitude as the lightly damped pole. The calculation of the desired pole
locations is handled by the functi@fpolelocs.m

These desired pole locations were then mapped onto desired digital pole locations #sing

6sT

The observer pole locations were found two ways: first placing them at twice as fast as the
controller polegp;, = 2p,.) in the continuous domain (before mapping to trdomain) and then
by designing a Kalman filter using the Matlghlman function.

The parameters used for the system model are from a curve fit that does not consider phase
error with a model with an* term in the numerator of the transfer functioniof). The model
is sixth order and considers the first two modes of the flexible base. The system parameters are
loaded by the functiolopadparams_ss_11 05 03.m ;

This function loads data from the mat-fileatrix_ssobs.mat which is the output of
the Simulink filematrix_ssobs_obs_subsys 11 10 03.mdl that simulates the state
feedback controller with accelerometer noise.

G.1.2 Additional Matlab Files

[Clpolelocs.m___|

A=varargin{1};
B=varargin{ 2};
C=varargif 3};
deszeta=vararg{@};
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varargouf 1}=eigcl;

This function finds the desired closed loop poles of a state feedback controller for SAMII by
first finding the poles with unity theta feedback and then moving any complex poles to the same
natural frequency but with the specified damping ratio.

loadparams _ss 11 05 _0Us.mj

This function loads system parameters from a curve fit that does not consider phase error with a
model with ans* term in the numerator of the transfer functionigf). The model is sixth order
and considers the first two modes of the flexible base.

(matrix _ssobs.mat |

[matrix _ssobs _obs subsys 11 _10_0s.mdl |

G.1.3 Verbatim Matlab Files
[digital ss design m2 editted verb apndx.pdf
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Chapter 9
System ID with 3 Flexible Base Modes

The third mode instability seen when implementing the controller in Chppter 8 lead me to refit a
wider frequency range of my Bode data and include the third mode in my models.

In this chapter, | also considered including the phase error in my optimization (in my previous
curve fitting efforts, the phase was predicted fairly well by the models even though it was not
considered in the error function). The overall error | was trying to minimize was the sum of the
squared magnitude error in dB plus a phase weight times the sum of the squared phase error in
degrees. Results are shown for phase weights of 0-0.5 by steps of 0.1.[Figure 9.1 shows that with
phase error not considered (phase weight=0), the actuator model does not predict the phase near
10Hz as well as previous models (with only 2 modes).

9.1 Introduction

The data used for the curve fitting in this system i.d. work was generated using a swept sine input
to SAMII's joint 2. This was done with SAMII in a nominal configuration of joint 1 = 29{bint
2 =90, and joint 3 = 90, and joints 4-6 = 0. This puts SAMII in a configuration where joint 2
positions the second link vertical and joint 3 and the end effector point north.

The swept sine data is based on 3 averages. The swept sine input has frequency content from
0.1-40Hz.

The swept sine data is saved in the Matlab &leept_sine_bode 08 25 03.mat
Fixed sine data is saved in the fflged_sine_bode 08 22 03.mat . The fixed sine data
is overlaid for comparison only and is not used in any calculations.

The model used for the curve fitting can be found in theddeiimodel.m

The hydraulic actuator was modeled with the transfer function

0 K (5*+2Cw.s +wl) 7 ©.1)
v sw? (32 + 2¢w,s + wg) (s+7) .

This model was implemented using the Matlab code:

hyd_act=tf(k1*wp"2*[1,2*wz*zz,wz"2],wz"2*[1,2*wp*zpl,wp~2,0]);
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fo_lag=tf(tau,[1 tau]);
hyd_act=hyd_act*fo_lag;

The flexible base was modeled by with the transfer function

T B B B:
T 1 -+ 2 5+ 3 5 (9.2)
0 $2 4+ 2Cw1s +wi 24 20wes +wi s+ 2(3wss + w3

wherew,; = w, and(, = (..
This model was implemented using the Matlab code:

model=tf(1,[1,2*z1*w1,w1"2]);
mode2=tf(1,[1,2*z2*w2,w2"2]);
mode3=tf(1,[1,2*z3*w3,w3"2]);

qd=tf((1 0 0 O 0],1);
flexb=qd*(B1*model+B2*mode2+B3*mode3);

The curve fitting was done using the Matlab functforinsearch . The error function de-
fined the error as the squared sum of the magnitude errors in dB from the swept sine data for both
the actuator and the flexible base plus the squared sum of the phase error (for both the actuator
and the flexible base) times a phase weighting factor. This error function was implemented using
Matlab code:

ev1=20*log1l0(mean_io_mr)-20*log10(act_fit_mag);
ev2=20*logl0(mean_a2_j2a_mr)-20*log10(base_fit_mag);
phel=mean_io_ph-act_fit_ph;

phe2=mean_a2_j2a ph-base_fit_ph;
evt=[evl;ev2;phaseweight*phel;phaseweight*phe2];

errout=sum(evt."2);
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Figure 9.1: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.

9.2 Phase Weight=0 (phase error not considered)

Figureg 9.]L and 9|2 show the results of curve fitting SAMII's Bode data with a phase weight of 0.

Curve fitting criteria:

Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of
500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Krauss convergence criteria.
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Figure 9.2: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase

weight for this optimization was 0.
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The output coefficent values were

95.4406 ] [ K]
54.6046 Wy
0.163755 Cp
62.1284 w,
0.0677148 ¢,
294.127 T

T = 10.8724 where 7= | w; (9.3)

0.0281329 G
156.561 w3
0.0395 (3
—0.00153797 B
0.00159421 B,

| 0.000276836 | | Bs |

These plots were generated by the Matlab filain_bode fit 11 14 03.m , Which
callsthefiledoad data s4 m3 11 14 03.m ,run_optim_s4 m3_11 14 03.m ,and
genbodeplots 11 14 03.m . The optimization uses the error figamiierr.-m  which
depends on the model fisamiimodel.m . The curve fit results are written to the ascii file
bodefit 11 14 03_pw=0.txt

All of these files are in the foldeZ:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03
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Figure 9.3: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.1.

9.3 Phase Weight=0.1

Figured 9.B anfl 9.4 show the results of curve fitting SAMII's Bode data with a phase weight of

0.1.
Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Matlab convergence criteria.
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Figure 9.4. Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.1.
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The output coefficent values were

27.8962 ] [ Ky ]
55.2835 Wy
0.139813 Cp
62.0634 W,
0.0486851 ¢,
158.869 T

T = 10.8862 where 7= | w; (9.4)

0.0298125 G
156.814 ws
0.0336399 (3
—0.00146074 B
0.00156505 By

| 0.000280877 | | Bs |

These plots were generated by the Matlab filain_bode fit 11 14 03.m , Which
callsthefiledoad data s4 m3 11 14 03.m ,run_optim_s4 m3_11 14 03.m ,and
genbodeplots 11 14 03.m . The optimization uses the error figamiierr.-m  which
depends on the model fisamiimodel.m . The curve fit results are written to the ascii file
bodefit 11 14 03 _pw=0_1.txt

All of these files are in the foldeZ:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03
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Figure 9.5: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.2.

9.4 Phase Weight=0.2

Figured 9.b anfl 9.6 show the results of curve fitting SAMII's Bode data with a phase weight of

0.2.
Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500

iterations.)
Met Matlab convergence criteria. The percent error change on the last loop was -1.22381e-
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Figure 9.6: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.2.
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008% and the percent change in the coefficents was

—0.000597686
—3.59537¢ — 005
—0.00116798
—7.01124e — 005
0.000828878
0.000139129
%Az = | —3.03098¢ — 005 (9.5)
—0.00251684
—5.67693¢ — 005
—0.000785406
3.36303¢ — 005
0.000319589
0.000429127

The output coefficent values were

28.4998 ] [ Ky ]
55.2627 Wy
0.113717 e
62.0611 W,
0.035692 ¢,
143.207 T
T = 10.8871 where 7= | w; (9.6)
0.0382545 G1
157.501 w3
0.0258995 (3
—0.00140709 B
0.00153227 B,
| 0.000291275 | | B3 |
These plots were generated by the Matlab filain_bode fit 11 14 03.m , Which
callsthefiledoad data s4 m3 11 14 03.m ,run_optim_s4 m3 11 14 03.m ,and
genbodeplots 11 14 03.m . The optimization uses the error figamiierr.-m  which

depends on the model fisamiimodel.m . The curve fit results are written to the ascii file
bodefit 11 14 03 _pw=0_2.txt

All of these files are in the foldeZ:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03
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Figure 9.7: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.3.

9.5 Phase Weight=0.3

Figured 9.7 anfl 9.8 show the results of curve fitting SAMII's Bode data with a phase weight of

0.3.
Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500

iterations.)
Met Matlab convergence criteria. The percent error change on the last loop was -2.78414e-
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Figure 9.8: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.3.
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009% and the percent change in the coefficents was

0.000224966
3.80211e — 005
0.000826388
3.40805¢ — 005
0.000671968
—0.00055353
%Az = | 9.18664¢ — 005 (9.7)
0.000327665
5.17764¢ — 006
—1.6552¢ — 005
—0.000180637
—8.92491¢ — 005

0.000213391
The output coefficent values were
28.6391 ] [ Ky ]
55.2783 Wy
0.103414 G
62.0692 W,
0.0303846 ¢,
139.245 T
T = 10.8884 where 7= | w; (9.8)
0.047849 G1
157.829 w3
0.0219657 (3
—0.00135041 B
0.0014989 B,
| 0.000303583 | | B3 |
These plots were generated by the Matlab filain_bode fit 11 14 03.m , Which
callsthefiledoad data s4 m3 11 14 03.m ,run_optim_s4 m3 11 14 03.m ,and
genbodeplots 11 14 03.m . The optimization uses the error figamiierr.-m  which

depends on the model fisamiimodel.m . The curve fit results are written to the ascii file
bodefit 11 14 03 pw=0_3.txt

All of these files are in the foldeZ:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03
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Figure 9.9: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.4.

9.6 Phase Weight=0.4

Figureqd 9.p and 9.10 show the results of curve fitting SAMII's Bode data with a phase weight of

0.4.
Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500

iterations.)
Met Matlab convergence criteria. The percent error change on the last loop was -8.49406e-
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Figure 9.10: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.4.
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009% and the percent change in the coefficents was

—0.000311367
—7.3114e — 005
—0.00155954
—2.21957¢ — 005
—0.000444943
0.000691911
%Az = | —0.00010933 (9.9)
—0.00139417
1.49292¢ — 005
—0.00173694
2.70344¢ — 006
0.00025895
0.000997821

The output coefficent values were

28.6947 K,

55.2662 Wp

0.0992186 Cp

62.0713 W,

0.0284038 ¢,

137.869 T
= 10.8883 where T = | w; (9.10)

0.0533673 G1

157.982 w3

0.0199391 (3

—0.0012746 B

0.00145774 By

| 0.000318233 | | Bs |

These plots were generated by the Matlab filain_bode fit 11 14 03.m , Which
callsthefiledoad data s4 m3 11 14 03.m ,run_optim_s4 m3 11 14 03.m ,and
genbodeplots 11 14 03.m . The optimization uses the error figamiierr.-m  which

depends on the model fisamiimodel.m . The curve fit results are written to the ascii file
bodefit 11 14 03 pw=0_4.txt

All of these files are in the folde&Z:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03
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Figure 9.11: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.5.

9.7 Phase Weight=0.5

Figured 9.I]1 and 9.12 show the results of curve fitting SAMII's Bode data with a phase weight

of 0.5.
Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

300 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 300

iterations.)
Did not meet either the Krauss or the Matlab convergence criteria. The percent error change

99



CHAPTER 9. SYSTEM ID WITH 3 FLEXIBLE BASE MODES November 24, 2003

I
o
T

N
o
T

— swept sine data
o fixed sine data
optimization output

Mag Ratio (dB)

|
N
o
T

—40b——— .
10’ 10"

Figure 9.12: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.5.
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on the last loop was -0.00011%4%and the percent change in the coefficents was

—0.0296606
—0.00466991
—0.152182
—0.00983466
0.000984358
—0.0053648
%Az = 0.0435498 (9.11)
—0.00604467
0.00255982
0.212486
—0.00446356
—0.00490934
| —0.0201934 |
The output coefficent values were
28.8249 ] [ k1 ]
54.3453 wp
0.104566 zpl
61.8723 Wz
0.0406231 2z
143.094 tau
T = 7.08669 where = | wl (9.12)
0.817514 z1
158.322 w3
0.0325469 23
—0.00218181 B1
0.00199658 B2
| 0.000247715 | | B3 |
These plots were generated by the Matlab filain_bode fit 11 14 03.m , Which
callsthefiledoad data s4 m3 11 14 03.m ,run_optim_s4 m3 11 14 03.m ,and
genbodeplots 11 14 03.m . The optimization uses the error fi@miierr.m  which

depends on the model fisamiimodel.m . The curve fit results are written to the ascii file
bodefit 11 14 03 _pw=0_5.txt

All of these files are in the folde&Z:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03
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Figure 9.13: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position.

9.8 Overlay of All Phase Weights

Figureqd 9.1B an{d 9.14 overlay the results of curve fitting SAMII's Bode data with various phase
weights.

Figure[9.14 shows that as phase weight is increased, amplitude error near the first mode
(1.7Hz) is traded off against phase error near the zero between the second and third modes (20Hz).
For the case of phase weight=0.5, the first mode is completely missed while the phase near 20Hz
is matched very well. | am going to use the parameter estimates from a phase weight of 0.1 as a
starting point in my controller design.

H.1 Matlab Files Used

H.1.1 Main Matlab File

The main Matlab file ignain_bode fit 11 14 03.m | This is the current (as of 11/24/03)
main file for Bode curve fitting. It calls several other files to run an optimization that reduces
the error between model and experimetnal bode curves. The error includes the squared sum
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Figure 9.14: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration.
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of magnitude errors in dB and a weighting factor times the phase error in degrees. The model
includes the first three modes of the flexible base.

This file calls the filesun_optim_s4 m3 11 14 03 andgenbodeplots 11 14
03.m.

H.1.2 Additional Matlab Files

[curvetitparams _S4_ma.m

As of 11/24/03, this function is not used in this directory.

TIX _Sine | 08 22 Oo.m

[genbodeplots 11 14 0s.m|

This file generates the bode plots for one set of curve fitting results (i.e. one phase weight). This
file is called bymain_bode fit 11 14 03.m

[oad & T M3 T T2 03T

This file loads experimental swept and fixed sine data. The swept sine data is loaded into global
variables used by the curve fitting cost function. This file is callednlayn_bode_fit_ 11
14 03.m andoverlay_fits.m

loverlay _fits.m |

This file loads the results from curve fitting Bode data with various phase weights. It than overlays
the Bode curves from the various weights to allow the best fit to be selected. To overlay the plots,
it calls the functioroverlaybodeplots_11 14 03.m

[overlaybodeplots 1114 _05.m|

This file has 3 inputs: starting figure index, coeffscell, and pwcell. The function overlays the bode
plots from a cell array of curve fit output coeffiecents. The cell array of phase weigths (pwcell)
is used only for the legend entries. This file is calleddwerlay_fits.m and is used to
overlay the output of runningnain_bode _fit 11 14 03.m multiple times with different
phase weights.

run _optim _s4 _msl1l_14_05.m|

This function runs the Matlab function fminsearch for a given set of optmization paramters (max-
imum nmber of iterations, etc.) and then outputs the results to a text file. This function is called
by main_bode_fit 11 14 03.m and uses the filsamiierr.-m  as the cost function for
fminsearch.
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[samiierr.m |

This function defines the cost function for the curve fit. The cost function is the sum of the
squared magnitude error in dB plus a phase weighting term (scalar) times the sum of the squared
phase error in degrees.

errout=samiierr(coeffsin,phaseweight)

The first input (coeffsin) is a vector of input coeffiecients. The second input is the phase
weight.

This function is called byun_optim_s4 m3 11 14 04.m  and calls the functioeamiimodel.
m which outputs the bode magnitudes and phases for both the actuator and flexible base models
based on the vector of input coeffiecents.

[Ssamimodel.m |

This function is called byamiierror.m . This function takes a vector of coeffiecients as an
input and outputs the bode magnitudes and phases for both the actuator and flexible base models.
coeffsin=varargigl};

varargouf 1}=actfit_mag;
varargouf2}=basefit_mag;
varargouf3}=actfit_ph;
varargouf4}=basefit_ph;

[swept _sine _bode 06 _25_0Us.mat |

H.1.3 Verbatim Matlab Files
[main _bode fit s4 m3 editied verb apndx.pdf

105


SupportFiles/MatlabFiles/samiierr.m
SupportFiles/MatlabFiles/samiimodel.m
SupportFiles/MatlabFiles/swept_sine_bode_08_25_03.mat

Chapter 10

Pole Canceling Controller Design

The basic idea behind this controller design is to cancel the lightly damped flexible system and
replace them with more highly damped poles. A block diagram of the system is shown in Figure
[10.7. This will be done by designing the pole canceling compensator shown in Figure 10.1.

One of the pairs of second order poles that need to be canceled are the closed loop poles of
the inner feedback loop that controls the angular positiafy oT his pair of poles is given by

—4.214 — 52.841

—4.214 4 52.844 (10.1)

cancel; =

The other two pairs of second order poles that need to be canceled are from the first and third
mode of the flexible base (the second mode poles get canceled by the numerator of the hydraulic
actuator transfer function). These poles are given by

—0.3245 — 10.88:
—0.3245 + 10.88¢
—5.275 — 156.74
—5.275 + 156.71

cancel pp1 3 = (10.2)

X I\controller_4
>

To File

Flexible
Base TF VJ (.
(3 modes)

) 4 Pole Canceling :
7] 64918 ()] 175 >—{ Compensay yaraulie =
(3 modes) ctuator

Subsystem

Figure 10.1: Desired vs. actual joint 2 angle for a controller with no vibration suppression.
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The compensator will have these poles that we are seeking to cancel as its zeros and the desired
replacement poles as its poles. The desired pole locations are

f = 3

fo = 8

fz = 10 (10.3)
(10.4)

where all of thef’s, are in Hz and

G =1

G =1

G =1 (10.5)
(10.6)

These desired pole natural frequencies and damping ratios are turned into pole locations by using

the relationship
dy =—Cw=xiy/1—-¢? (10.7)

These desired poles are given by
[ —18.85 ]
—18.85
—50.27
b= | _5027 (10.8)
—62.83

| —62.83

The desired poles are specified to be critically damped, and then the overall gain of the compen-
sator is chosen using root locus so that the closed loop poles having damping of approximately
0.7. The desired poles and zeros for the compensator are used to find the polynomials for the
numerator and denominator of the compensator transfer function by using the Matlab function
poly .

The compensator transfer function is given by

s® +19.63s° 4 (2.762e + 4)s* + (2.57e + 5)s® + (7.251e + 7)s* + (7.293e 4+ 7)s + (8.189%¢ + 9)

56 + 263.95° 4 (2.799¢ + 4)s4 + (1.515¢ + 6)s3 + (4.37e + 7)s% + (6.299¢ + 8)s + (3.544e + 9)
(10.9)

Figureq 10.R anf 10.3 show the root locus for the system. These loci stop at the chosen com-

pensator gain value of 0.0666. This value was chosen to place the closed loop system poles at

locations with¢ ~ 0.7. (Note that Figur¢ 10]3 is simply zooming in on Figfire 10.2 near the

origin.)

c =
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Figure 10.2: Root locus of the mass damping system without a lowpass filter or any other
modifications.
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Figure 10.3: Root locus of the mass damping system without a lowpass filter or any other
modifications (zooming in on Figurg 10.P).
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.1 Matlab Files Used

[.1.1 Main Matlab File

The main Matlab file igmain pole cancellation 11 25 03.m | This function is the

main function used to design a controller based on canceling the lightly damped poles of SAMII.
The initial design will be based on canceling and placing the first two lightly damped poles in a
model that includes the first three modes of the flexible base. If the third mode goes unstable as
a result (I suspect it will), then the controller will be redesigned to cancel the third mode as well.

[.1.2 Additional Matlab Files

[pole _cancel _locl.m |

This function is very similar to the fil€:\ryan\GT\Research\SAMI\Ryan_SAMII_
Wincon\system_id\without_force torque 08 20 _03\analysis\rlocus_pole
cancel_pseudo_s 4.m . It will go further in that it will simulate the response with the third
mode of the flexible base included in the model.

The basic idea is that the controller will cancel the lightly damped poles of the flexible base
and replace them with poles with significantly higher damping.

.1.3 Verbatim Matlab Files

[ocancel design editted verb apndx.pdf
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SupportFiles/MatlabFiles/main_pole_cancellation_11_25_03.m
SupportFiles/MatlabFiles/pole_cancel_loci.m

Chapter 11

Pole Canceling Controller Implementation

This chapter shows results from implementing the controller designed in Chapter 10. Simulation
and experimental results are overlaid.

This controller does a good job of not exciting vibration by changing how a step change in
desired angle is input into the system, but it is not capable of quickly damping out a vibration
disturbance. In this sense, this controller seems to act like an input shaper.

Figureg/ 11.5 shows the result of moving SAMII without the pole canceling compensator being
used and then turning the pole canceling compensator on to see if it quickly damps the vibration.
Obviously this didn’t work very well.

Figure[11.6 shows that the simulation does a pretty good job of predicting, ttesponse.
Figure[11.}y shows that the simulation does a decent good job of predicting the acceleration
resonse when viewed from the axis settings of Figure|11.4. Fjgureé 11.8 shows that the simu-
lation is not as good when the response is zoomed in on.
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Figure 11.1: Desired vs. actual joint 2 angle for a controller with no vibration suppression.
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Figure 11.2: Desired vs. actual joint 2 angle for a controller with a pole canceling compen-
sator.
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Figure 11.3: Actual joint 2 angle without vibration suppression vs. a controller with a pole
canceling compensator.
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Figure 11.4: Base acceleration with and without a controller with a pole canceling compen-
sator.
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Figure 11.5: An unsuccessful attempt to recreate the Loper plot with the pole canceling
controller.
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Figure 11.6: Simulated vs. experimental response for a system with a pole canceling com-
pensator.
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Figure 11.7: Simulated vs. experimental response for a system with a pole canceling com-
pensator (zooming in). These are the same x-axis settings as shown in Figure 11.4.
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Figure 11.8: Simulated vs. experimental response for a system with a pole canceling com-
pensator (zooming in). These are the same x-axis settings as shown in Figure 11.4.
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J.1 Matlab Files Used

J.1.1 Main Matlab File

The main Matlab file ifoad_pcancel.m | This function loads data from testing done with a
pole canceling SISO controller on 11/26/03. It then overlays the data from testing done with and
without this pole cancelation controller. It also plots data attempting to use this new controller to
recreate the Loper plot where the vibration suppression controller is turned on and the vibration
quickly goes away. This controller is essentially acting as input shaper, so the result is not as
impressive as the plot from Loper’s thesis.

The design of this controller is done in the Matlab fil@in_pole_cancellation_11
25 _03.m , which calls the filgpole_cancel_loci.m

This file also overlays experimental and simulation data. The simulation data comes from the
Simulink file pole_cancel_m3_sim.mdl

J.1.2 Additional Matlab Files

[bigstep _with _pcancel.mat |

[compensator.madl |

floper _attempt.mat |

[pole _cancel _masim.mdl |

[pole _cancel _switching _sim.mdl |

simdata.mat |

[step__no_pcancel.mat |

[step __with _pcancel.mat |

J.1.3 Verbatim Matlab Files

[ocancel overlay verb apndX.pdf
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SupportFiles/MatlabFiles/load_pcancel.m
SupportFiles/MatlabFiles/bigstep_with_pcancel.mat
SupportFiles/MatlabFiles/compensator.mdl
SupportFiles/MatlabFiles/loper_attempt.mat
SupportFiles/MatlabFiles/pole_cancel_m3_sim.mdl
SupportFiles/MatlabFiles/pole_cancel_switching_sim.mdl
SupportFiles/MatlabFiles/simdata.mat
SupportFiles/MatlabFiles/step_no_pcancel.mat
SupportFiles/MatlabFiles/step_with_pcancel.mat
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