
Chapter 1

System ID with 2 Flexible Base Modes

Performing system identification on Bode data of SAMII operating around a nominal position
was a significant part of what I did this semester. Not only did curve fitting take up a significant
amount of my time, but it provided me with models that I performed root locus analysis on (root
locus analysis was another significant portion of my research this semester).

At the start of the semester, I thought that only the first two modes of the flexible base were
significant contributors to SAMII’s base vibration. Toward the end of the semester I designed a
controller that placed the poles for the first two modes of the base at higher damped locations.
This controller made the third mode unstable which lead me to include the third mode in my
curve fitting. System ID that includes the first three modes is document thoroughly in Chapter 9.
Since that documentation is very thorough, I include only an overview of the curve fitting done
with only two modes.

Section 1.1 describes the models used for system id in this chapter.
Section 1.2 shows the results of curve fitting where I was manually tuning coefficients through

a trial and error process (this seemed like an easy way to get an approximate model at the time).
Section 1.3 shows the results of my first optimization curve fitting. The error function that

I am seeking to minimize in this section does not include any phase error (the 3 mode curve
fitting of Chapter 9 does). The error is the sum of the squared magnitude error in dB for both the
actuator and the flexible base.

Section 1.4 compares the results from the manual curve fitting to the optimization results and
overlays the Bode plots.

1.1 Transfer Function Models

The curve fitting done in this chapter uses the following model for the actuator:

θ

v
=

K1ω
2
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(1.1)
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and this model for the flexible base:

x

θ
=
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(1.2)

1.2 Manual Curve Fitting

The coefficients from my manual curve fitting were

x̄ =


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

where x̄ =


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(1.3)
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Figure 1.1: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position.
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Figure 1.2: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration.
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1.3 Optimization

The results shown in equation 1.4 and Figures 1.3 and 1.4 are for an optimization done over a
frequency range of 1-12Hz and with an error function that minimizes the sum of the squared
magnitude error in dB for both the actuator and the flexible base. This optimization uses a sixth
order model with ans4 term in the numerator of the transfer functionẍ/θ. This fit does not
consider phase error at all. This fit includes only the first two modes of the flexible base.

The output coefficients from the optimization were

x̄ =


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

where x̄ =



K1

ωp

ζp

ωz

ζz

τ
ω1

ζ1

B1

B2



(1.4)
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Figure 1.3: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position.
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Figure 1.4: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration.
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Figure 1.5: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position.

1.4 Overlaying Manual Curve Fits with Optimization Results

Figures 1.5 and 1.6 overlay the results from my manual curve fitting with results from my first
optimization attempt.

Comparing the results of my manual curve fitting effort to the optimization result gives

x̄m =


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

and x̄o =
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

(1.5)

wherex̄m refers to the manual curve fit and̄xo refers to the optimization result.
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Figure 1.6: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration.

A.1 Matlab Files Used

A.1.1 Main Matlab File

The main Matlab file isplottwobode.m This file fills in a gap in my notebook for Fall 03 by
formally documenting and comparing the results of my initial curve fitting at the beginning of
the semester where I was tuning the parameters by hand and by trial and error to the results of
my initial optimization work. The optimization was done over a frequency range of 1-12Hz and
the error function is the sum of the squared magnitude error in dB for both the actuator and the
flexible base. This optimization uses a sixth order model with ans4 term in the numerator of the
transfer function̈x/θ. This fit does not consider phase error at all. This fit includes only the first
two modes of the flexible base.

This file calls the fileload_data.m andgenbodeplots_s4m2.m which depends on
the functionsamiimodelss4m2.m .

A.1.2 Additional Matlab Files

genbodeplots s4m2.m

This file generates the bode plots for manual curve fitting results and/or my first optimization
work (depending on the setting ofcasenum ). This file is called byplottwobode.m .
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load data.m

This file loads experimental swept and fixed sine data. The swept sine data is loaded into global
variables used by the curve fitting cost function. This file is called byplottwobode.m .

samiimodels4m2.m

This function is called bygenbodeplots_s4m2.m . This function takes a vector of co-
effiecients as an input and outputs the bode magnitudes and phases for both the actuator and
flexible base models.

coeffsin=varargin{1};

varargout{1}=act fit mag;
varargout{2}=basefit mag;
varargout{3}=act fit ph;
varargout{4}=basefit ph;

A.1.3 Verbatim Matlab Files

comparing_s4m2_fits_combined_editted_verb_apndx.pdf
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Chapter 2

Root Locus Analysis:s4 Model for Flexible
Base TF

Root locus analysis of the linearized system models that came out of my system identification
efforts made up a significant chunk of the work done this semester. This analysis provided a
way to simulate modifications to the system that would have taken significant time and effort to
implement. This analysis shows that these modifications would not have solved the problems we
were having. So, this analysis saved me a lot of time that would have been wasted. The results
of this work have been accepted as a paper for the 2004 IEEE Aerospace Conference in Big Sky,
Montana.

This analysis was all done twice after a necessary change in the model was discovered.
If the system is modeled as a 2DOF system with position as the output and force as the input

and if force is proportional to angular acceleration (θ̈), then a transfer function for the system
would be

x

θ̈
=

B1φ1(L)

s2 + 2ζ1ω1s + w2
1

+
B2φ2(L)

s2 + 2ζ2ω2s + ω2
2

(2.1)

I initially fit this model to the input/output data for the system and it did not look quite right.
The phase was off by 180◦ from what I expected. I said to myself that I was actually measuring
acceleration rather than position so that the model should be

ẍ

θ̈
=

s2B1φ1(L)

s2 + 2ζ1ω1s + w2
1

+
s2B2φ2(L)

s2 + 2ζ2ω2s + ω2
2

(2.2)

This model was able to fit the data fairly well and I proceeded to perform the root locus analysis
included in Chapter 3. I refer to this model as thes2 model throughout this work.

Later on it dawned on me that I have anothers2 term missing from my model. Not only am I
measuring acceleration rather than position, but I am measuring angular position (θ) rather than
angular acceleration (θ̈). So the model I finally decided upon is

ẍ

θ
=

s4B1φ1(L)

s2 + 2ζ1ω1s + w2
1

+
s4B2φ2(L)

s2 + 2ζ2ω2s + ω2
2

(2.3)
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Figure 2.1: Root locus of the mass damping system without a lowpass filter or any other
modifications.

(I refer to this as thes4 model throughout this work). While this portion of the system is none
causal, the transfer function forθ/v is relative degree 2 so that the overall systemẍ/v is relative
degree zero.

The model change does not change the interpretation of the root locus results and the results
from the old model are included in Chapter 3 for comparison.

Chapter 4 overlays Bode plots from each of the two models. The results are somewhat incon-
clusive. Each model can do a decent job of recreating the system dynamics over the frequency
range considered (though the coefficients for the two models vary significantly). Bode data would
need to be taken over a wider range to show which model correctly predicts the high frequency
roll off (or lack there of) for the system. This higher frequency data is difficult to obtain because
of the band width of the hydraulic actuator.

Figure 2.1 shows a root locus for the mass damping control system without a low pass filter
or any modifications. This system is unstable for most values ofKa. There is no value forKa for
which this system has better vibration response than the system without acceleration feedback.

One interesting thing to note about this system is that it is relative degree two, however as
Ka → ∞, two of the poles are approaching±∞ along the real axis. This is the result of the
coefficientB2 in the flexible base transefer function (equation 2.4) being negative. This makes
all of the numerator coefficients in the tranfer functionẍ/d negative, resulting in a root locus with
an angle criterion of 0◦ rather than 180◦.

Figure 2.2 zooms in on the portion of the locus near the origin.
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Figure 2.2: Root locus of the mass damping system without a lowpass filter or any other
modifications. (Zooming in on Figure 2.1.)

x

θ̈
=

B1φ1(L)

s2 + 2ζ1ω1s + w2
1

+
B2φ2(L)

s2 + 2ζ2ω2s + ω2
2

(2.4)

With B2 negative, it seemed necessary to investigate the system with the gainKa negative as
well. The root locus for the unmodified system withKa negative is shown in Figure 2.3. This
system is also unstable for most values ofKa and there is not value forKa for which this system
has a better vibration response than the open loop system.

With the system not exhibiting better performance than the system without acceleration feed-
back for any values (positive or negative) ofKa, it seemed necessary to investigate the potential
improvement in system performance that could be attained if either of the two deviations from
the theoretical mass damping system could be fixed.

Figure 2.4 zooms in on the portion of the locus near the origin.
Figures 2.5 and 2.7 show the changes to the root locus resulting from eliminating the phase

difference between the pure integrator model and the experimentally determined actuator transfer
function near the second natural frequency of the base. This root locus simulates the system
response if the actuator was actually a pure integrator. This eliminates one second order zero
and one zero order pole from the root locus. At first glance it would appear that this has simply
eliminated the pole/zero pairs at−3.77±62.7j. Actually, this has eliminated the zeros at−3.77±
62.7j and the poles at−2.21± 50.7j. The poles at−3.77± 62.7j then follow trajectories similar
to those that the poles at−2.21 ± 50.7j used to follow in the system shown in Figures 2.1 and
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Figure 2.3: Root locus of the mass damping system without a lowpass filter or any other
modifications. The gainKa is negative.
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Figure 2.4: Root locus of the mass damping system without a lowpass filter or any other
modifications. The gainKa is negative. (Zooming in on Figure 2.3.)
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Figure 2.5: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed).

2.3.
The similarities between Figures 2.1 and 2.5 and between Figures 2.3 and 2.7 lead to the

somewhat counterintuitive conclusion that the 90◦ difference between expected and actual phase
near the second natural frequency of the base does not have a significant impact on the stability
of the system. The result seems counterintuitive from a vibrations stand point: if the system
is supposed to generate interaction forces the simulate damping, a 90◦ phase error should be
significant.

Figures 2.9 and 2.11 show the effects on the root locus of switching from accelerometers to
sensors that could somehow sense the position of the base. If suitable sensors could be found,
this would eliminate another difference between the actual system and the theoretical ideal that
this system was designed around. While this difference again seems intuitively significant, the
effects of installing base position sensors on the root locus are not obviously beneficial. This
change eliminates a pair of zeros at the origin and changes the system from relative degree one
to relative degree three. Figure 2.9 shows the root locus with gainKa positive and Figure 2.11
shows the root locus withKa negative. In both cases, the system is unstable for most values ofKa

and no value ofKa can be found for which the vibration response of the system is significantly
improved over the system without vibration feedback.

Figures 2.13 and 2.15 show the root locus for the system with both of the previously men-
tioned deviations from the ideal corrected (the actuator is a pure integrator and the system has
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Figure 2.6: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). (Zooming in on Figure 2.5.)
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Figure 2.7: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). The gainKa is negative.
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Figure 2.8: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). The gainKa is negative. (Zooming
in on Figure 2.7.)
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Figure 2.9: Root locus of the mass damping system with a base position sensor but without
a lowpass filter.
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Figure 2.10: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. (Zooming in on Figure 2.9.)
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Figure 2.11: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. The gainKa is negative.
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Figure 2.12: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. The gainKa is negative. (Zooming in on Figure 2.11.)
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Figure 2.13: Root locus of the mass damping system with a base position sensor and second
order dynamics removed from actuator but without a lowpass filter.

base position sensors). The system is still unstable for most values ofKa and the performance is
still not improved over the system with no active vibration suppression.

Figure 2.17 shows the root locus of the system with the current design for a low-pass filter on
the accelerometer signal (a 2nd order Butterworth filter with a cutoff frequency of 2Hz).
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Figure 2.14: Root locus of the mass damping system with a base position sensor and second
order dynamics removed from actuator but without a lowpass filter. (Zooming in on Figure
2.13.)
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Figure 2.15: Root locus of the mass damping system with a base position sensor and sec-
ond order dynamics removed from actuator but without a lowpass filter. The gainKa is
negative.
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Figure 2.16: Root locus of the mass damping system with a base position sensor and sec-
ond order dynamics removed from actuator but without a lowpass filter. The gainKa is
negative. (Zooming in on Figure 2.15.)
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Figure 2.17: Root locus of the base system with a lowpass filter.
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Figure 2.18: Root locus of the base system with a lowpass filter. (Zooming in on Figure
2.17.)
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B.1 Matlab File Used

B.1.1 Matlab File Summary

This file uses the Matlab filerlocus_full_story_s_4_callfunc.m This file generates
bode plots for many of the system modifications considered (accelerometers vs. base position
sensors, removing unmodeled actuator dynamics, etc).

I believe this file was eventually replaced bycall_rlocus_pseudos_s_4.m , which
allows for easier comparing of one system against another.

The transfer function for̈x/θ used in this file has ans4 term in its numerator.

B.1.2 Verbatim Matlab Text

rlocus_full_story_callfunc_editted_verb_apndx.pdf
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Chapter 3

Root Locus Analysis:s2 Model for Flexible
Base TF
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Figure 3.1: Root locus of the mass damping system without a lowpass filter or any other
modifications.
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Figure 3.2: Root locus of the mass damping system without a lowpass filter or any other
modifications. (Zooming in on Figure 3.1.)
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Figure 3.3: Root locus of the mass damping system without a lowpass filter or any other
modifications. The gainKa is negative.
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Figure 3.4: Root locus of the mass damping system without a lowpass filter or any other
modifications. The gainKa is negative. (Zooming in on Figure 3.3.)
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Figure 3.5: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed).
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Figure 3.6: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). (Zooming in on Figure 3.5.)
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Figure 3.7: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). The gainKa is negative.

34



CHAPTER 3. ROOT LOCUS ANALYSIS: S2 MODEL FOR FLEXIBLE BASE TFSeptember 15, 2003

−60 −50 −40 −30 −20 −10 0 10
−80

−60

−40

−20

0

20

40

60

80

Im
ag

in
ar

y

Real

Figure 3.8: Root locus of the mass damping system with an actuator that is a pure integrator
and a first order lag but without a lowpass filter (i.e. the second order pole and zero in the
actuator tranfer function have some how been removed). The gainKa is negative. (Zooming
in on Figure 3.7.)

35



CHAPTER 3. ROOT LOCUS ANALYSIS: S2 MODEL FOR FLEXIBLE BASE TFSeptember 15, 2003

−200 −150 −100 −50 0 50
−400

−300

−200

−100

0

100

200

300

400

Im
ag

in
ar

y

Real

Figure 3.9: Root locus of the mass damping system with a base position sensor but without
a lowpass filter.
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Figure 3.10: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. (Zooming in on Figure 3.9.)
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Figure 3.11: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. The gainKa is negative.
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Figure 3.12: Root locus of the mass damping system with a base position sensor but without
a lowpass filter. The gainKa is negative. (Zooming in on Figure 3.11.)
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Figure 3.13: Root locus of the mass damping system with a base position sensor and second
order dynamics removed from actuator but without a lowpass filter.
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Figure 3.14: Root locus of the mass damping system with a base position sensor and second
order dynamics removed from actuator but without a lowpass filter. (Zooming in on Figure
3.13.)
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Figure 3.15: Root locus of the mass damping system with a base position sensor and sec-
ond order dynamics removed from actuator but without a lowpass filter. The gainKa is
negative.
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Figure 3.16: Root locus of the mass damping system with a base position sensor and sec-
ond order dynamics removed from actuator but without a lowpass filter. The gainKa is
negative. (Zooming in on Figure 3.15.)
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Figure 3.17: Root locus of the base system with a lowpass filter.
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Figure 3.18: Root locus of the base system with a lowpass filter. (Zooming in on Figure
3.17.)
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Figure 3.19: Root locus of the base system with a lowpass filter. The gainKa is negative.
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Figure 3.20: Root locus of the base system with a lowpass filter. The gainKa is negative.
(Zooming in on Figure 3.19.)
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Figure 3.21: Root locus of the base system with a lowpass filter with a corner frequency
of4Hz.
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Figure 3.22: Root locus of the base system with a lowpass filter with a corner frequency
of4Hz. (Zooming in on Figure 3.21.)
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Figure 3.23: Root locus of the base system with a lowpass filter with a corner frequency
of4Hz. The gainKa is negative.
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Figure 3.24: Root locus of the base system with a lowpass filter with a corner frequency
of4Hz. The gainKa is negative. (Zooming in on Figure 3.23.)
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Figure 3.25: Root locus of the base system with a bandpass filter.
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Figure 3.26: Root locus of the base system with a bandpass filter. (Zooming in on Figure
3.25.)
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Figure 3.27: Root locus of the base system with a bandpass filter. The gainKa is negative.
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Figure 3.28: Root locus of the base system with a bandpass filter. The gainKa is negative.
(Zooming in on Figure 3.27.)
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C.1 Matlab File Used

C.1.1 Matlab File Summary

This file uses the Matlab filerlocus_full_story_s_2_callfunc.m This function gen-
erates several root loci simulating various system modifications for SAMII (base position sensing,
removing actuator dynamics, etc.).

The transfer function̈x/θ has ans2 term in its numerator.
This file was replacesrlocus_full_story.m .

C.1.2 Verbatim Matlab Text

rlocus_full_story_callfunc_s_2_verb_apndx.pdf
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Chapter 4

Comparing s2 and s4 Models for the
Flexible Base TF

The results reported here are from fitting the data with a model that has ans2 term in the numera-
tor of the transfer function̈x/θ. Figures 4.1-4.3 compare the results of curve fitting SAMII’s Bode
data with a phase weight of 0.1 with models that haves2 ands4 terms in the transfer function
numerator (̈x/θ).

The results of this comparison are somewhat inconclusive: both models are able to recreate
the system dynamics over the frequency change considered. Figure 4.3 shows that over the
frequency range from 20-40Hz, thes4 model seems to better capture the lack of roll off. This
is a small frequency range however and it is near the end of the bandwidth of the input swept
sine signal. Also this is near the end of the useful bandwidth of the hydraulic actuator - so it is
difficult to excite the system out past this range where the two models begin to differ significantly
because of the roll off of thes2 model.

Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Matlab convergence criteria. The percent error change on the last loop was -5.4434e-
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Figure 4.1: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.1.
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Figure 4.2: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.1.
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Figure 4.3: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 voltage and the output is base acceleration. The phase weight for
this optimization was 0.1.
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010% and the percent change in the coefficents was

%∆x =



5.86829e− 005
−3.81885e− 005

0.000239918
−9.71491e− 006

0.000186499
−9.51278e− 005
2.81043e− 007
0.000661983

−1.32802e− 005
−0.000149074
0.000103456

−1.03743e− 005
−8.48818e− 005



(4.1)

The output coefficent values were

x̄ =



29.1021
55.7324
0.202146
63.3685
0.084229
158.514
10.7661

0.0249317
158.082

0.0284088
0.168324
−8.02654
−5.77622



where x̄ =



K1

ωp

ζp

ωz

ζz

τ
ω1

ζ1

ω3

ζ3

B1

B2

B3



(4.2)

These plots were generated by the Matlab filemain_s2_bode_fit_12_03_03.m , which
calls the filesload_data_s2_m3_12_03_03.m , run_optim_s2_m3_12_03_03.m , and
genbodeplots_s2_12_03_03.m . The optimization uses the error filesamiierr.m which
depends on the model filesamiimodel.m . The curve fit results are written to the ascii file
bodefit_s2_12_03_03_pw=0_1.txt .

All of these files are in the folderC:\ryan\GT\Research\SAMII\curve_fitting\
Nov03\s2_fitting .
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D.1 Matlab Files Used

D.1.1 Main Matlab File

The main Matlab file ismain_s2_bode_fit_12_03_03.m This file is used to demonstrate
why the numerator of the transfer function between base acceleration and theta (angular position)
needs ans4 term in the numerator. This is done by curve fitting a model with only ans2 term in
the numerator and comparing the curve fit to the experimental Bode data.

This file calls the filesload_data_s2_m3_12_03_03.m , run_optim_s2_m3_12_
03_03.m andgenbodeplots_s2_12_03_03.m .

D.1.2 Additional Matlab Files

genbodeplots s2 12 03 03.m

This file generates the bode plots for one set of curve fitting results (i.e. one phase weight). This
file is called bymain_s2_bode_fit_12_03_03.m .

Results from fits done withs2 ands4 terms in the numerator of̈x/θ are overlaid.

load data s2 m3 12 03 03.m

This file loads experimental swept and fixed sine data. The swept sine data is loaded into global
variables used by the curve fitting cost function. This file is called bymain_s2_bode_fit_
12_03_03.m .

run optim s2 m3 12 03 03.m

This function runs the Matlab function fminsearch for a given set of optmization paramters (max-
imum nmber of iterations, etc.) and then outputs the results to a text file. This function is called by
main_s2_bode_fit_12_03_03.m and uses the filesamiierrs2.m as the cost function
for fminsearch.

The model used in the optimization has ans2 term in the numerator of the transfer function
between̈x/θ.

samiierrs2.m

This function defines the cost function for the curve fit. The cost function is the sum of the
squared magnitude error in dB plus a phase weighting term (scalar) times the sum of the squared
phase error in degrees.

errout=samiierrs2(coeffsin,phaseweight)
The first input (coeffsin) is a vector of input coeffiecients. The second input is the phase

weight.
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This function is called byrun_optim_s2_m3_12_03_04.m and calls the functionsamiimodels2.
m, which outputs the bode magnitudes and phases for both the actuator and flexible base models
based on the vector of input coeffiecents.

samiimodels2.m

This function is called bysamiierrors2.m andgenbodeplots_s2_12_03_03.m . This
function takes a vector of coeffiecients as an input and outputs the bode magnitudes and phases
for both the actuator and flexible base models.

This function has ans2 rather thans4 term in the numerator of the transfer function between
base acceleration and theta (angular position) for comparison purposes.

coeffsin=varargin{1};

varargout{1}=act fit mag;
varargout{2}=basefit mag;
varargout{3}=act fit ph;
varargout{4}=basefit ph;

samiimodels4.m

This function is called bygenbodeplots_s2_12_03_03.m . This function takes a vector of
coeffiecients as an input and outputs the bode magnitudes and phases for both the actuator and
flexible base models.

This function has ans4 term in the numerator of the transfer function between base accelera-
tion and theta (angular position) for comparison purposes.

coeffsin=varargin{1};

varargout{1}=act fit mag;
varargout{2}=basefit mag;
varargout{3}=act fit ph;
varargout{4}=basefit ph;

D.1.3 Verbatim Matlab Files

s2_vs_s4_curvefitting_verb_apndx.pdf
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Chapter 5

State-space Representation with Base
Acceleration and Angular Position Outputs

A state-space representation of the system was needed to perform pole placement design. This
was done by starting with the transfer function model of the system and working toward a con-
trollable canonical form.

This manipulation of the system model was done twice: this chapter performs that analysis for
one accelerometer output attached at the end of the arm. Chapter 7 performs this same analysis
but with two accelerometers used to provide modal feedback.

5.1 Transfer Function Manipulation

The transfer funciton forθ/d can be written as

θ

d
=

ωd
2 (s2 + 2ζ2ω2s + ω2

2) τ

sω2
2 (s2 + 2ζdωds + ωd

2) (s + τ)
(5.1)

The transfer function for̈x/θ can be written as

ẍ

θ
=

s4B1ω1
2

s2 + 2ζ1ω1s + ω1
2

+
s4B2ω2

2

s2 + 2ζ2ω2s + ω2
2

(5.2)

multiplying equation 5.2 by equation 5.1 allows the transfer function betweenẍ/d to be written
as

ẍ

d
=

((ω2
2s2 + 2ω2

2ζ1ω1s + ω1
2ω2

2) s3B2 + (ω1
2ω2

2 + ω1
2s2 + 2ω1

2ζ2ω2s) s3B1) ωd
2τs

(s2 + 2ζ1ω1s + ω1
2) sω2

2 (s2 + 2ζdωds + ωd
2) (s + τ)

(5.3)

For the sake of the state-space representation, we will use the following common denominator
for the tranfer functions

D =
(
s2 + 2ζ1ω1s + ω1

2
)
sω2

2
(
s2 + 2ζdωds + ωd

2
)

(s + τ) (5.4)
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The numerator and denominator of the transfer functionθ/d would need to be mulplied by the
term

D

Dθ

= s2 + 2ζ1ω1s + ω1
2 (5.5)

Expanding the denominator gives

D = ω2
2s6 +

(
2ω2

2ζ1ω1 + ω2
2τ + 2ω2

2ζdωd

)
s5

+
(
4ω2

2ζ1ω1ζdωd + 2ω2
2ζ1ω1τ + ω1

2ω2
2 + ω2

2ωd
2 + 2ω2

2ζdωdτ
)
s4

+
(
2ω2

2ω1
2ζdωd + ω2

2ω1
2τ + ω2

2ωd
2τ + 2ω2

2ζ1ω1ωd
2 + 4ω2

2ζ1ω1ζdωdτ
)
s3

+
(
2ω2

2ω1
2ζdωdτ + ω2

2ω1
2ωd

2 + 2ω2
2ζ1ω1ωd

2τ
)
s2

+ω2
2sω1

2ωd
2τ (5.6)

Expanding the numerator forθ/d gives

Nθ = s4τωd
2 +

(
2τωd

2ζ1ω1 + 2τωd
2ζ2ω2

)
s3

+
(
ω1

2ωd
2τ + 4τωd

2ζ2ω2ζ1ω1 + ω2
2ωd

2τ
)
s2

+
(
2τωd

2ω1
2ζ2ω2 + 2ω2

2ζ1ω1ωd
2τ
)
s

+ω2
2ω1

2ωd
2τ (5.7)

Expanding the numerator for̈x/d gives

Nx =
(
B1ω1

2 + B2ω2
2
)
ωd

2τs6

+
(
2ω2

2ζ1ω1B2 + 2ω1
2ζ2ω2B1

)
ωd

2τs5

+
(
B2ω2

2ω1
2 + B1ω1

2ω2
2
)
ωd

2τs4 (5.8)

5.2 Controllable Cannonical Form

For a system with the transfer function

y

u
=

bns
n + bn−1s

n−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0

(5.9)

the controllable cannonical realization would be

A =


0 1 0 0
...

... ... 0
0 · · · 0 1
−a0 −a1 · · · −an−1

 (5.10)

57



CHAPTER 5. STATE-SPACE REPRESENTATION WITH BASE ACCELERATION AND
ANGULAR POSITION OUTPUTS December 4, 2003

B =


0
...
0
1

 (5.11)

C =
[

b0 − bna0 b1 − bna1 · · · bn−1 − bnan−1

]
(5.12)

D = bn (5.13)

For this systemn = 6 and the coefficients of the denominator polynomial are

a0 = 0 (5.14)

a1 = ω2
2ω1

2ωd
2τ (5.15)

a2 = 2ω2
2ω1

2ζdωdτ + ω2
2ω1

2ωd
2 + 2ω2

2ζ1ω1ωd
2τ (5.16)

a3 = 2ω2
2ω1

2ζdωd + ω2
2ω1

2τ + ω2
2ωd

2τ + 2ω2
2ζ1ω1ωd

2 + 4ω2
2ζ1ω1ζdωdτ (5.17)

a4 = 4ω2
2ζ1ω1ζdωd + 2ω2

2ζ1ω1τ + ω1
2ω2

2 + ω2
2ωd

2 + 2ω2
2ζdωdτ (5.18)

a5 = 2ω2
2ζ1ω1 + ω2

2τ + 2ω2
2ζdωd (5.19)

a6 = ω2
2 (5.20)

becausea6 6= 1 all of the coefficients (an andbn) must be divided bya6 before being plugged
into the matix representation.
With θ as the output, the coefficients of the numerator polynomial are

b0 = ω2
2ω1

2ωd
2τ (5.21)

b1 = 2τωd
2ω1

2ζ2ω2 + 2ω2
2ζ1ω1ωd

2τ (5.22)

b2 = ω1
2ωd

2τ + 4τωd
2ζ2ω2ζ1ω1 + ω2

2ωd
2τ (5.23)

b3 = 2τωd
2ζ1ω1 + 2τωd

2ζ2ω2 (5.24)

b4 = τωd
2 (5.25)

With ẍ as the output, the coefficients of the numerator polynomial are

b0 = 0 (5.26)

b1 = 0 (5.27)

b2 = 0 (5.28)

b3 = 0 (5.29)

b4 = τωd
2B2ω2

2ω1
2 + τωd

2B1ω1
2ω2

2 (5.30)

b5 = 2ωd
2τω2

2ζ1ω1B2 + 2ωd
2τω1

2ζ2ω2B1 (5.31)

b6 = ωd
2τB1ω1

2 + ωd
2τB2ω2

2 (5.32)
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Finding the transfer functionθ/d from the matrices according to

θ

d
= C (sI−A)−1 B + D (5.33)

gives
θ

d
=

(s2 + 2ζ2ω2s + ω2
2) τωd

2

ω2
2 (s2 + 2sζdωd + ωd

2) (s + τ) s
(5.34)

giving us back what we started with and proving that the state-space representation is correct.
Similarly the transfer function̈x/d from the matrices is

ẍ

d
=

(s3 (s2ω2
2 + 2ζ1ω1sω2

2 + ω1
2ω2

2) B2 + s3 (ω1
2ω2

2 + 2ω1
2ζ2sω2 + s2ω1

2) B1) ωd
2τs

sω2
2 (s2 + 2sζdωd + ωd

2) (s + τ) (s2 + 2sζ1ω1 + ω1
2)

(5.35)
which is exactly the transfer function in equation 5.3. The state space matrices are given by

A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −ω1
2ωd

2τ −2ω2
2ω1

2ζdωdτ−ω1
2ω2

2ωd
2−2ω2

2ζ1ω1ωd
2τ

ω2
2

−2ω2
2ω1

2ζdωd−ω2
2ω1

2τ−ω2
2ωd

2τ−2ω2
2ζ1ω1ωd

2−4ω2
2ζ1ω1ζdωdτ

ω2
2

−4ω2
2ζ1ω1ζdωd−2ω2

2ζ1ω1τ−ω1
2ω2

2−ω2
2ωd

2−2ω2
2ζdωdτ

ω2
2

−2ω2
2ζ1ω1−ω2

2τ−2ω2
2ζdωd

ω2
2


(5.36)

C =

 ω1
2ωd

2τ 2τωd
2ω1

2ζ2ω2+2ω2
2ζ1ω1ωd

2τ
ω2

2
ω1

2ωd
2τ+4τωd

2ζ2ω2ζ1ω1+ω2
2ωd

2τ
ω2

2
2τωd

2ζ1ω1+2τωd
2ζ2ω2

ω2
2

τωd
2

ω2
2 0

0 −(ωd
2τB1ω1

2+ωd
2τB2ω2

2)ω1
2ωd

2τ

ω2
2 −(ωd

2τB1ω1
2+ωd

2τB2ω2
2)(2ω2

2ω1
2ζdωdτ+ω1

2ω2
2ωd

2+2ω2
2ζ1ω1ωd

2τ)
ω2

4 −(ωd
2τB1ω1

2+ωd
2τB2ω2

2)(2ω2
2ω1

2ζdωd+ω2
2ω1

2τ+ω2
2ωd

2τ+2ω2
2ζ1ω1ωd

2+4ω2
2ζ1ω1ζdωdτ)

ω2
4

τωd
2B2ω2

2ω1
2+τωd

2B1ω1
2ω2

2

ω2
2 − (ωd

2τB1ω1
2+ωd

2τB2ω2
2)(4ω2

2ζ1ω1ζdωd+2ω2
2ζ1ω1τ+ω1

2ω2
2+ω2

2ωd
2+2ω2

2ζdωdτ)
ω2

4
2ωd

2τω2
2ζ1ω1B2+2ωd

2τω1
2ζ2ω2B1

ω2
2 − (ωd

2τB1ω1
2+ωd

2τB2ω2
2)(2ω2

2ζ1ω1+ω2
2τ+2ω2

2ζdωd)
ω2

4


(5.37)

D =

 0

ωd
2τB1ω1

2+ωd
2τB2ω2

2

ω2
2

 (5.38)

This state space system representation is output to the m-fileccfaccelwnums.m .
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E.1 Matlab Files Used

E.1.1 Main Matlab File

The main Matlab file isccfaccel.m This file starts with the transfer functions for the hydraulic
actuator and base acceleration including the first two modes of the flexible base. From there it
derives a controllable canonical state space representation of the system. This file outputs the
results of its derivation to a LaTeX file for easy readability. The output file isccfaccel.tex .

The transfer functions used in this derivation include ans4 term in the numerators of the
transfer functions between the base accleration and the theta input (angular position) (i.e.ẍ/θ).

It also creates a Matlab m-file that defines the state space matrices in terms of the variables
used in this derivation. Editting this file so that it begins with numerically defining each of these
variables (i.e. w1=2*pi*10), gives an m-file that has the properly defined state space representa-
tion of the system. The output m-file generated by this file isccfaccelwnums.m and the edit-
ted version isccfaccelwnums_editted.m which actually calls the filecurvefitparams_
s_4_sixth where the parameters are all defined.sy

E.1.2 Additional Matlab Files

ccfaccelwnums.m

This file was created by the m-file C:\ryan\GT\Research\SAMII\statespace\ccfaccel.m and it
contains a CCF state-space model for SAMII based on SISO transfer functions about a nominal
operating point.

E.1.3 Verbatim Matlab Files

ccfaccel_verb_apndx.pdf
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Chapter 6

Verifying State-space Model by
Comparison with Transfer Function Model

The state-space representation developed in Chatper 5 is verified by overlaying Bode and root
locus plots from the transfer function based model and the state-space model.
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Figure 6.1: Comparison of Bode diagrams for the hydraulic actuator based on the transfer
function based model and the state space model.
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Figure 6.2: Root locus of the hydraulic actuator from the transfer function based model.
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Figure 6.3: Root locus of the hydraulic actuator from the state space model.
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Figure 6.4: Overlay of root loci of the hydraulic actuator from the transfer function based
model and the state space model.
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Figure 6.5: Comparison of Bode diagrams for the flexible base based on the transfer func-
tion based model and the state space model.
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Figure 6.6: Root locus of the flexible base from the transfer function based model.
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Figure 6.7: Root locus of the flexible base from the state space model.
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Figure 6.8: Overlay of root loci of the flexible base from the transfer function based model
and the state space model.
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F.1 Matlab File Used

F.1.1 Matlab File Summary

This file uses the Matlab fileccfaccelwnums_editted.m A porition of this file was created
by the m-fileC:\ryan\GT\Research\SAMII\statespace\ccfaccel.m and contains
a CCF state-space model for SAMII based on SISO transfer functions about a nominal operating
point.

This file callscurvefitparams_s_4_sixth to define the system parameters and then
generates bode plots and root loci to verify that the state space system is correctly recreating the
transfer function based system.

F.1.2 Verbatim Matlab Text

ccfaccel_tf_ss_comp_verb_apndx.pdf
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Chapter 7

State-space Representation with Two
Accelerometers Providing Modal Feedback

A controllable canonical representation of the system with 2 accelerometers providing modal
feedback is developed in this chapter based on a transfer function based model.

7.1 Transfer Function Manipulation

The transfer funciton forθ/d can be written as

θ

d
=

ωd
2 (s2 + 2ζ2ω2s + ω2

2) τ

sω2
2 (s2 + 2ζdωds + ωd

2) (s + τ)
(7.1)

The transfer function for̈q1/θ can be written as

q̈1

θ
=

s4B1ω1
2

s2 + 2ζ1ω1s + ω1
2

(7.2)

The transfer function for̈q2/θ can be written as

q̈2

θ
=

s4B2ω2
2

s2 + 2ζ2ω2s + ω2
2

(7.3)

multiplying equation 7.2 by equation 7.1 allows the transfer function betweenq̈1/d to be written
as

q̈1

d
=

s4ωd
2 (s2 + 2ζ2ω2s + ω2

2) τB1ω1
2

sω2
2 (s2 + 2ζdωds + ωd

2) (s + τ) (s2 + 2ζ1ω1s + ω1
2)

(7.4)

multiplying equation 7.3 by equation 7.1 allows the transfer function betweenq̈2/d to be written
as

q̈2

d
=

s4ωd
2τB2

s (s2 + 2ζdωds + ωd
2) (s + τ)

(7.5)
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where the terms(s2 + 2ζ2ω2s + ω2
2) andω2

2 have canceled between the numerator and denomi-
nator.
For the sake of the state-space representation, we will use the following common denominator
for the tranfer functions

D = sω2
2
(
s2 + 2ζdωds + ωd

2
)

(s + τ)
(
s2 + 2ζ1ω1s + ω1

2
)

(7.6)

The numerator and denominator of the transfer functionθ/d would need to be mulplied by the
term

D

Dθ

= s2 + 2ζ1ω1s + ω1
2 (7.7)

Similarly, the numerator and denominator of the transfer functionq̈2/d would need to be mulplied
by the term

D

Dq2

= ω2
2
(
s2 + 2ζ1ω1s + ω1

2
)

(7.8)

Expanding the denominator gives

D = s6ω2
2 +

(
2ω2

2ζdωd + 2ω2
2ζ1ω1 + ω2

2τ
)
s5

+
(
2ω2

2ζdωdτ + 4ω2
2ζdωdζ1ω1 + ω2

2ωd
2 + 2ω2

2τζ1ω1 + ω2
2ω1

2
)
s4

+
(
ω2

2ωd
2τ + 2ω2

2ωd
2ζ1ω1 + ω2

2τω1
2 + 4ω2

2ζdωdτζ1ω1 + 2ω2
2ζdωdω1

2
)
s3

+
(
ω2

2ωd
2ω1

2 + 2ω2
2ωd

2τζ1ω1 + 2ω2
2ζdωdτω1

2
)
s2

+sω2
2ωd

2τω1
2 (7.9)

Expanding the numerator forθ/d gives

Nθ = s4ωd
2τ +

(
2ωd

2τζ1ω1 + 2ωd
2τζ2ω2

)
s3

+
(
ωd

2τω1
2 + 4ωd

2τζ2ω2ζ1ω1 + ω2
2ωd

2τ
)
s2

+
(
2ωd

2τζ2ω2ω1
2 + 2ω2

2ωd
2τζ1ω1

)
s

+ω2
2ωd

2τω1
2 (7.10)

Expanding the numerator for̈q1/d gives

Nq1 = ωd
2τB1ω1

2s6 + 2ωd
2τζ2ω2B1ω1

2s5 + ω2
2ωd

2τB1ω1
2s4 (7.11)

Expanding the numerator for̈q2/d gives

Nq2 = s6ωd
2τB2ω2

2 + 2s5ωd
2τB2ω2

2ζ1ω1 + s4ωd
2τB2ω2

2ω1
2 (7.12)
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7.2 Controllable Cannonical Form

For a system with the transfer function

y

u
=

bns
n + bn−1s

n−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0

(7.13)

the controllable cannonical realization would be

A =


0 1 0 0
...

... ... 0
0 · · · 0 1
−a0 −a1 · · · −an−1

 (7.14)

B =


0
...
0
1

 (7.15)

C =
[

b0 − bna0 b1 − bna1 · · · bn−1 − bnan−1

]
(7.16)

D = bn (7.17)

For this systemn = 6 and the coefficients of the denominator polynomial are

a0 = 0 (7.18)

a1 = ω2
2ωd

2τω1
2 (7.19)

a2 = ω2
2ωd

2ω1
2 + 2ω2

2ωd
2τζ1ω1 + 2ω2

2ζdωdτω1
2 (7.20)

a3 = ω2
2ωd

2τ + 2ω2
2ωd

2ζ1ω1 + ω2
2τω1

2 + 4ω2
2ζdωdτζ1ω1 + 2ω2

2ζdωdω1
2 (7.21)

a4 = 2ω2
2ζdωdτ + 4ω2

2ζdωdζ1ω1 + ω2
2ωd

2 + 2ω2
2τζ1ω1 + ω2

2ω1
2 (7.22)

a5 = 2ω2
2ζdωd + 2ω2

2ζ1ω1 + ω2
2τ (7.23)

a6 = ω2
2 (7.24)

becausea6 6= 1 all of the coefficients (an andbn) must be divided bya6 before being plugged
into the matix representation.
With θ as the output, the coefficients of the numerator polynomial are

b0 = ω2
2ωd

2τω1
2 (7.25)

b1 = 2ωd
2τζ2ω2ω1

2 + 2ω2
2ωd

2τζ1ω1 (7.26)

b2 = ωd
2τω1

2 + 4ωd
2τζ2ω2ζ1ω1 + ω2

2ωd
2τ (7.27)

b3 = 2ωd
2τζ1ω1 + 2ωd

2τζ2ω2 (7.28)

69



CHAPTER 7. STATE-SPACE REPRESENTATION WITH TWO ACCELEROMETERS
PROVIDING MODAL FEEDBACK October 6, 2003

b4 = ωd
2τ (7.29)

With q̈1 as the output, the coefficients of the numerator polynomial are

b0 = 0 (7.30)

b1 = 0 (7.31)

b2 = 0 (7.32)

b3 = 0 (7.33)

b4 = ω2
2ωd

2τB1ω1
2 (7.34)

b5 = 2ωd
2τζ2ω2B1ω1

2 (7.35)

b6 = ωd
2τB1ω1

2 (7.36)

With q̈2 as the output, the coefficients of the numerator polynomial are

b0 = 0 (7.37)

b1 = 0 (7.38)

b2 = 0 (7.39)

b3 = 0 (7.40)

b4 = ωd
2τB2ω2

2ω1
2 (7.41)

b5 = 2ωd
2τB2ω2

2ζ1ω1 (7.42)

b6 = ωd
2τB2ω2

2 (7.43)

Finding the transfer functionθ/d from the matrices according to

θ

d
= C (sI−A)−1 B + D (7.44)

gives
θ

d
=

(s2 + 2ζ2ω2s + ω2
2) ωd

2τ

ω2
2 (s2 + 2sζdωd + ωd

2) (s + τ) s
(7.45)

giving us back what we started with and proving that the state-space representation is correct.
Similarly the transfer function̈q1/d from the matrices is

q̈1

d
=

ωd
2τω1

2s3 (s2 + ω2
2 + 2sζ2ω2) B1

ω2
2 (s2 + 2sζdωd + ωd

2) (s + τ) (s2 + 2sζ1ω1 + ω1
2)

(7.46)

which is exactly the transfer function in equation 7.4 but with ans cancelled between the numer-
ator and denominator. Similarly the transfer functionq̈2/d from the matrices is

q̈2

d
=

B2s
3ωd

2τ

(s2 + 2sζdωd + ωd
2) (s + τ)

(7.47)
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which is exactly the transfer function in equation 7.5 but with ans cancelled between the numer-
ator and denominator. The state space matrices are given by

A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −ωd
2τω1

2 −ω2
2ωd

2ω1
2−2ω2

2ωd
2τζ1ω1−2ω2

2ζdωdτω1
2

ω2
2

−ω2
2ωd

2τ−2ω2
2ωd

2ζ1ω1−ω2
2τω1

2−4ω2
2ζdωdτζ1ω1−2ω2

2ζdωdω1
2

ω2
2

−2ω2
2ζdωdτ−4ω2

2ζdωdζ1ω1−ω2
2ωd

2−2ω2
2τζ1ω1−ω2

2ω1
2

ω2
2

−2ω2
2ζdωd−2ω2

2ζ1ω1−ω2
2τ

ω2
2


(7.48)

C =


ωd

2τω1
2 2ωd

2τζ2ω2ω1
2+2ω2

2ωd
2τζ1ω1

ω2
2

ωd
2τω1

2+4ωd
2τζ2ω2ζ1ω1+ω2

2ωd
2τ

ω2
2

2ωd
2τζ1ω1+2ωd

2τζ2ω2

ω2
2

ωd
2τ

ω2
2 0

0 −ωd
4τ2B1ω1

4

ω2
2 −ωd

2τB1ω1
2(ω2

2ωd
2ω1

2+2ω2
2ωd

2τζ1ω1+2ω2
2ζdωdτω1

2)
ω2

4 −ωd
2τB1ω1

2(ω2
2ωd

2τ+2ω2
2ωd

2ζ1ω1+ω2
2τω1

2+4ω2
2ζdωdτζ1ω1+2ω2

2ζdωdω1
2)

ω2
4 ωd

2τB1ω1
2 − ωd

2τB1ω1
2(2ω2

2ζdωdτ+4ω2
2ζdωdζ1ω1+ω2

2ωd
2+2ω2

2τζ1ω1+ω2
2ω1

2)
ω2

4 2ωd
2τζ2B1ω1

2

ω2
− ωd

2τB1ω1
2(2ω2

2ζdωd+2ω2
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2τζ1ω1+2ω2
2ζdωdτω1

2)
ω2

2 −ωd
2τB2(ω2
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2τ)
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2


(7.49)

D =


0

ωd
2τB1ω1

2

ω2
2

ωd
2τB2

 (7.50)

This state space system representation is output to the m-fileccfmodalwnums.m .
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F.1 Matlab Files Used

F.1.1 Main Matlab File

The main Matlab file isccfmodal.m This file starts with the transfer functions for the hydraulic
actuator and the first two modes of the flexible base. From there it derives a controllable canonical
state space representation of the system. This file outputs the results of its derivation to a\LaTeX
file for easy readability. The output file isccfmodal.tex .

The transfer functions used in this derivation include ans4 term in the numerators of the trans-
fer functions between the modal acclerations and the theta input (angular position) (i.e.q̈i/θ).

It also creates a Matlab m-file that defines the state space matrices in terms of the variables
used in this derivation. Editting this file so that it begins with numerically defining each of these
variables (i.e. w1=2*pi*10), gives an m-file that has the properly defined state space representa-
tion of the system. The output m-file generated by this file isccfmodalwnums.m and the edit-
ted version isccfmodalwnums_editted.m which actually calls the filecurvefitparams_
s_4_sixth where the parameters are all defined.sy

F.1.2 Additional Matlab Files

ccfmodalwnums.m

This file was created by the m-file C:\ryan\GT\Research\SAMII\statespace\ccfmodal.m and it
contains a CCF state-space model for SAMII based on SISO transfer functions about a nominal
operating point.

ccfmodalwnums editted.m

A porition of this file was created by the m-fileC:\ryan\GT\Research\SAMII\statespace\
ccfmodal.m and contains a CCF state-space model for SAMII based on SISO transfer func-
tions about a nominal operating point. This file callscurvefitparams_s_4_sixth to de-
fine the system parameters and then generates bode plots and root loci to verify that the state
space system is correctly recreating the transfer function based system.

This file also includes a pole placement controller design for SAMII that was proposed in my
IEEE Aerospace conference paper. The controller is designed in continuous time and does not
include an observer (i.e. all states are assumed measurable and availible for full state feedback -
obviously this is not the case, but it is used as a starting point to verify that the controller would
work well if full state feedback was availible).

F.1.3 Verbatim Matlab Files

ccfmodal_verb_apndx.pdf
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Chapter 8

Initial Digital Pole Placement
Controller/Observer Design

This file documents the design of a digital state feedback observer controller for SAMII. The open
loop pole locations for SAMII operating around a nominal configuration of(−90◦, 90◦, 90◦, 0◦, 0◦, 0◦)
are

pol =



0
−188.5

−6.237 + 52.01i
−6.237− 52.01i
−0.4361 + 10.55i
−0.4361− 10.55i


(8.1)

The poles for a system having unityθ feedback and no vibration suppression are

pθfb =



−169.8
−2.986 + 51.56i
−2.986− 51.56i

−25.19
−0.4361 + 10.55i
−0.4361− 10.55i


(8.2)

The desired pole locations for the state feedback system being designed are

pdes =



−169.8
−36.52− 36.52i
−36.52 + 36.52i

−25.19
−7.466− 7.466i
−7.466 + 7.466i


(8.3)

Figure 8.1 plots the real vs. imaginary parts of these poles.
Figure 8.2 plots the real vs. imaginary parts of the digital poles.
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Figure 8.1: Pole locations for the open loop system, a controller for SAMII that has only
θ feedback (i.e. no vibration suppression), and the desired pole locations for a full state
feedback system.
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Figure 8.2: Digital pole locations for the open loop system, a controller for SAMII that has
only θ feedback (i.e. no vibration suppression), and the desired pole locations for a full state
feedback system.
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Figure 8.3: Bode plots forθ/v and ẍ/θ for the SAMII control system with the desired closed
loop poles.
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Figure 8.4: Bode plots for an observer system designed by pole placement.
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Figure 8.5: Bode plots for an observer system based on Kalman design.
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Figure 8.6: Step response for the state feedback controller observer system with no noise.
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Figure 8.7: Step response for the state feedback controller observer system from a Simulink
simulation with accelerometer noise.
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Figure 8.8: Block diagram of the Simulink simulation.
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Figure 8.3 shows a bode plot forθ/v for the closed loop state feedback system with the
desired pole locations.

Figure 8.4 shows a bode plot for observer system designed by pole placement.
Figure 8.5 shows a bode plot for observer system designed as a Kalman filter.
Figure 8.6 shows the step response of the state feedback controller observer without any noise.
Figure 8.7 shows the step response of the state feedback controller observer system from a

simulation in Simulink with accelerometer noise.
Figure 8.8 shows the block diagram of the Simulink simulaiton.
While the acceleration signals from Figures 8.6 and 8.7 look promising, this controller made

the third mode of the flexible base unstable when implemented experimentally. This third mode
instability lead me to refit a wider frequency range of my bode data, so that the third mode was
included in my models. Once I had the new models, I began redesigning a new controller similar
to this one but considering the third mode.
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G.1 Matlab Files Used

G.1.1 Main Matlab File

The main Matlab file isdigital_ss_11_05_03.m This file designs a digital pole placement
state feedback controller/observer for SAMII for a system model with 2 modes of the flexible
base. This controller seems to work well in simulation, though it does have some noise sensitity
concerns. When implemented experimentally, this controller made the third mode of the system
go unstable. This instability is kept in check by the fact that the thrid mode (around 30Hz) is
near the limit of the bandwidth of the system. However, this controller does not really work in
practice. This lead me to curve fit a wider frequency range of my bode data to get a model that
includes the third mode, so that I could design and test a new controller.

It outputs a text file that can be cut and pasted into Simulink that includes digital A,B,C,D,K,
and L matrices. The digital system is found using the Matlab c2d function with the ’zoh’ option.
The K and L matrices are found by performing pole placement on the digital system.

The desired pole locations for the state feedback controller were found by first finding the
eigenvalues of the system with unityθ feedback (this gives good response as far as the speed of
gettingθ to the desired position, but it is fast enough to excite significant vibration if nothing
is done to suppression vibration). The real poles of this system with unityθ feedback are left
unchanged. The complex poles are then moved to a pole location having a specified damping
ratio, but the same magnitude as the lightly damped pole. The calculation of the desired pole
locations is handled by the functionclpolelocs.m .

These desired pole locations were then mapped onto desired digital pole locations usingz =
esT .

The observer pole locations were found two ways: first placing them at twice as fast as the
controller poles(pL = 2pc) in the continuous domain (before mapping to thez domain) and then
by designing a Kalman filter using the Matlabkalman function.

The parameters used for the system model are from a curve fit that does not consider phase
error with a model with ans4 term in the numerator of the transfer function ofẍ/θ. The model
is sixth order and considers the first two modes of the flexible base. The system parameters are
loaded by the functionloadparams_ss_11_05_03.m ;

This function loads data from the mat-filematrix_ssobs.mat which is the output of
the Simulink filematrix_ssobs_obs_subsys_11_10_03.mdl that simulates the state
feedback controller with accelerometer noise.

G.1.2 Additional Matlab Files

clpolelocs.m

A=varargin{1};
B=varargin{2};
C=varargin{3};
deszeta=varargin{4};
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varargout{1}=eigcl;

This function finds the desired closed loop poles of a state feedback controller for SAMII by
first finding the poles with unity theta feedback and then moving any complex poles to the same
natural frequency but with the specified damping ratio.

loadparams ss 11 05 03.m

This function loads system parameters from a curve fit that does not consider phase error with a
model with ans4 term in the numerator of the transfer function ofẍ/θ. The model is sixth order
and considers the first two modes of the flexible base.

matrix ssobs.mat

matrix ssobs obs subsys 11 10 03.mdl

G.1.3 Verbatim Matlab Files

digital_ss_design_m2_editted_verb_apndx.pdf
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Chapter 9

System ID with 3 Flexible Base Modes

The third mode instability seen when implementing the controller in Chapter 8 lead me to refit a
wider frequency range of my Bode data and include the third mode in my models.

In this chapter, I also considered including the phase error in my optimization (in my previous
curve fitting efforts, the phase was predicted fairly well by the models even though it was not
considered in the error function). The overall error I was trying to minimize was the sum of the
squared magnitude error in dB plus a phase weight times the sum of the squared phase error in
degrees. Results are shown for phase weights of 0-0.5 by steps of 0.1. Figure 9.1 shows that with
phase error not considered (phase weight=0), the actuator model does not predict the phase near
10Hz as well as previous models (with only 2 modes).

9.1 Introduction

The data used for the curve fitting in this system i.d. work was generated using a swept sine input
to SAMII’s joint 2. This was done with SAMII in a nominal configuration of joint 1 = -90◦, joint
2 = 90◦, and joint 3 = 90◦, and joints 4-6 = 0◦. This puts SAMII in a configuration where joint 2
positions the second link vertical and joint 3 and the end effector point north.

The swept sine data is based on 3 averages. The swept sine input has frequency content from
0.1-40Hz.

The swept sine data is saved in the Matlab fileswept_sine_bode_08_25_03.mat .
Fixed sine data is saved in the filefixed_sine_bode_08_22_03.mat . The fixed sine data
is overlaid for comparison only and is not used in any calculations.

The model used for the curve fitting can be found in the filesamiimodel.m .
The hydraulic actuator was modeled with the transfer function

θ

v
=

K1ω
2
p (s2 + 2ζzωzs + ω2

z) τ

sω2
z

(
s2 + 2ζpωps + ω2

p

)
(s + τ)

(9.1)

This model was implemented using the Matlab code:

hyd_act=tf(k1*wpˆ2*[1,2*wz*zz,wzˆ2],wzˆ2*[1,2*wp*zp1,wpˆ2,0]);
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fo_lag=tf(tau,[1 tau]);
hyd_act=hyd_act*fo_lag;

The flexible base was modeled by with the transfer function

ẍ

θ
= s4

(
B1

s2 + 2ζ1ω1s + ω2
1

+
B2

s2 + 2ζ2ω2s + ω2
2

+
B3

s2 + 2ζ3ω3s + ω2
3

)
(9.2)

whereω2 = ωz andζ2 = ζz.
This model was implemented using the Matlab code:

mode1=tf(1,[1,2*z1*w1,w1ˆ2]);
mode2=tf(1,[1,2*z2*w2,w2ˆ2]);
mode3=tf(1,[1,2*z3*w3,w3ˆ2]);
qd=tf([1 0 0 0 0],1);
flexb=qd*(B1*mode1+B2*mode2+B3*mode3);

The curve fitting was done using the Matlab functionfminsearch . The error function de-
fined the error as the squared sum of the magnitude errors in dB from the swept sine data for both
the actuator and the flexible base plus the squared sum of the phase error (for both the actuator
and the flexible base) times a phase weighting factor. This error function was implemented using
Matlab code:

ev1=20*log10(mean_io_mr)-20*log10(act_fit_mag);
ev2=20*log10(mean_a2_j2a_mr)-20*log10(base_fit_mag);
phe1=mean_io_ph-act_fit_ph;
phe2=mean_a2_j2a_ph-base_fit_ph;

evt=[ev1;ev2;phaseweight*phe1;phaseweight*phe2];

errout=sum(evt.ˆ2);
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Figure 9.1: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.

9.2 Phase Weight=0 (phase error not considered)

Figures 9.1 and 9.2 show the results of curve fitting SAMII’s Bode data with a phase weight of 0.
Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Krauss convergence criteria.

84



CHAPTER 9. SYSTEM ID WITH 3 FLEXIBLE BASE MODES November 24, 2003

10
0

10
1

−40

−20

0

20

40

M
ag

 R
at

io
 (

dB
)

10
0

10
1

−300

−200

−100

0

100

200

P
ha

se
 (

de
g)

Freq (Hz)

swept sine data
fixed sine data
optimization output

Figure 9.2: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.
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The output coefficent values were

x̄ =



25.4406
54.6046
0.163755
62.1284

0.0677148
294.127
10.8724

0.0281329
156.561
0.0395

−0.00153797
0.00159421
0.000276836



where x̄ =



K1

ωp

ζp

ωz

ζz

τ
ω1

ζ1

ω3

ζ3

B1

B2

B3



(9.3)

These plots were generated by the Matlab filemain_bode_fit_11_14_03.m , which
calls the filesload_data_s4_m3_11_14_03.m , run_optim_s4_m3_11_14_03.m , and
genbodeplots_11_14_03.m . The optimization uses the error filesamiierr.m which
depends on the model filesamiimodel.m . The curve fit results are written to the ascii file
bodefit_11_14_03_pw=0.txt .

All of these files are in the folderC:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03 .

86



CHAPTER 9. SYSTEM ID WITH 3 FLEXIBLE BASE MODES November 24, 2003

10
0

10
1

−30

−20

−10

0

10

20

M
ag

 R
at

io
 (

dB
)

10
0

10
1

−250

−200

−150

−100

P
ha

se
 (

de
g)

Freq (Hz)

swept sine data
fixed sine data
optimization output

Figure 9.3: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.1.

9.3 Phase Weight=0.1

Figures 9.3 and 9.4 show the results of curve fitting SAMII’s Bode data with a phase weight of
0.1.

Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Matlab convergence criteria.
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Figure 9.4: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.1.

88



CHAPTER 9. SYSTEM ID WITH 3 FLEXIBLE BASE MODES November 24, 2003

The output coefficent values were

x̄ =



27.8962
55.2835
0.139813
62.0634

0.0486851
158.869
10.8862

0.0298125
156.814

0.0336399
−0.00146074
0.00156505
0.000280877



where x̄ =



K1

ωp

ζp

ωz

ζz

τ
ω1

ζ1

ω3

ζ3

B1

B2

B3



(9.4)

These plots were generated by the Matlab filemain_bode_fit_11_14_03.m , which
calls the filesload_data_s4_m3_11_14_03.m , run_optim_s4_m3_11_14_03.m , and
genbodeplots_11_14_03.m . The optimization uses the error filesamiierr.m which
depends on the model filesamiimodel.m . The curve fit results are written to the ascii file
bodefit_11_14_03_pw=0_1.txt .

All of these files are in the folderC:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03 .
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Figure 9.5: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.2.

9.4 Phase Weight=0.2

Figures 9.5 and 9.6 show the results of curve fitting SAMII’s Bode data with a phase weight of
0.2.

Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Matlab convergence criteria. The percent error change on the last loop was -1.22381e-
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Figure 9.6: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.2.
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008% and the percent change in the coefficents was

%∆x =



−0.000597686
−3.59537e− 005
−0.00116798

−7.01124e− 005
0.000828878
0.000139129

−3.03098e− 005
−0.00251684

−5.67693e− 005
−0.000785406
3.36303e− 005
0.000319589
0.000429127



(9.5)

The output coefficent values were

x̄ =



28.4998
55.2627
0.113717
62.0611
0.035692
143.207
10.8871

0.0382545
157.501

0.0258995
−0.00140709
0.00153227
0.000291275



where x̄ =


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ωp

ζp

ωz

ζz

τ
ω1

ζ1

ω3

ζ3

B1
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B3



(9.6)

These plots were generated by the Matlab filemain_bode_fit_11_14_03.m , which
calls the filesload_data_s4_m3_11_14_03.m , run_optim_s4_m3_11_14_03.m , and
genbodeplots_11_14_03.m . The optimization uses the error filesamiierr.m which
depends on the model filesamiimodel.m . The curve fit results are written to the ascii file
bodefit_11_14_03_pw=0_2.txt .

All of these files are in the folderC:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03 .
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Figure 9.7: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.3.

9.5 Phase Weight=0.3

Figures 9.7 and 9.8 show the results of curve fitting SAMII’s Bode data with a phase weight of
0.3.

Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Matlab convergence criteria. The percent error change on the last loop was -2.78414e-
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Figure 9.8: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.3.
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009% and the percent change in the coefficents was

%∆x =



0.000224966
3.80211e− 005
0.000826888

3.40805e− 005
0.000671968
−0.00055353

9.18664e− 005
0.000327665

5.17764e− 006
−1.6552e− 005
−0.000180637
−8.92491e− 005

0.000213391



(9.7)

The output coefficent values were

x̄ =



28.6391
55.2783
0.103414
62.0692

0.0303846
139.245
10.8884
0.047849
157.829

0.0219657
−0.00135041
0.0014989

0.000303583



where x̄ =


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ζp

ωz

ζz

τ
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ω3

ζ3

B1
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

(9.8)

These plots were generated by the Matlab filemain_bode_fit_11_14_03.m , which
calls the filesload_data_s4_m3_11_14_03.m , run_optim_s4_m3_11_14_03.m , and
genbodeplots_11_14_03.m . The optimization uses the error filesamiierr.m which
depends on the model filesamiimodel.m . The curve fit results are written to the ascii file
bodefit_11_14_03_pw=0_3.txt .

All of these files are in the folderC:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03 .
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Figure 9.9: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.4.

9.6 Phase Weight=0.4

Figures 9.9 and 9.10 show the results of curve fitting SAMII’s Bode data with a phase weight of
0.4.

Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

500 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 500
iterations.)

Met Matlab convergence criteria. The percent error change on the last loop was -8.49406e-
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Figure 9.10: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.4.
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009% and the percent change in the coefficents was

%∆x =



−0.000311367
−7.3114e− 005
−0.00155954

−2.21957e− 005
−0.000444943
0.000691911
−0.00010933
−0.00139417

1.49292e− 005
−0.00173694

2.70344e− 006
0.00025895
0.000997821



(9.9)

The output coefficent values were

x̄ =



28.6947
55.2662

0.0992186
62.0713

0.0284038
137.869
10.8883

0.0533673
157.982

0.0199391
−0.0012746
0.00145774
0.000318233



where x̄ =


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

(9.10)

These plots were generated by the Matlab filemain_bode_fit_11_14_03.m , which
calls the filesload_data_s4_m3_11_14_03.m , run_optim_s4_m3_11_14_03.m , and
genbodeplots_11_14_03.m . The optimization uses the error filesamiierr.m which
depends on the model filesamiimodel.m . The curve fit results are written to the ascii file
bodefit_11_14_03_pw=0_4.txt .

All of these files are in the folderC:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03 .
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Figure 9.11: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position. The phase weight for this optimization was 0.5.

9.7 Phase Weight=0.5

Figures 9.11 and 9.12 show the results of curve fitting SAMII’s Bode data with a phase weight
of 0.5.

Curve fitting criteria:
Curve fit set to loop 20 times. Each loop runs the Matlab optimization for a maximum of

300 iterations. The Krauss convergence criteria was set to a maximum percent change in any
coeffiecent of 0.01 and an error function maximum percent change of 0.01. These criteria needed
to be met for 5 consecutive loops. (The percent changes refer to changes in the values at the
end of one loop versus the values at the end of the previous loop where each loop represents 300
iterations.)

Did not meet either the Krauss or the Matlab convergence criteria. The percent error change
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Figure 9.12: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration. The phase
weight for this optimization was 0.5.
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on the last loop was -0.0001149% and the percent change in the coefficents was

%∆x =



−0.0296606
−0.00466991
−0.152182
−0.00983466
0.000984358
−0.0053648
0.0435498
−0.00604467
0.00255982
0.212486

−0.00446356
−0.00490934
−0.0201934



(9.11)

The output coefficent values were

x̄ =



28.8249
54.3453
0.104566
61.8723

0.0406231
143.094
7.08669
0.817514
158.322

0.0325469
−0.00218181
0.00199658
0.000247715



where x̄ =



k1
wp
zp1
wz
zz
tau
w1
z1
w3
z3
B1
B2
B3



(9.12)

These plots were generated by the Matlab filemain_bode_fit_11_14_03.m , which
calls the filesload_data_s4_m3_11_14_03.m , run_optim_s4_m3_11_14_03.m , and
genbodeplots_11_14_03.m . The optimization uses the error filesamiierr.m which
depends on the model filesamiimodel.m . The curve fit results are written to the ascii file
bodefit_11_14_03_pw=0_5.txt .

All of these files are in the folderC:\DocumentsandSettings\ryan\MyDocuments\
GT\Research\SAMII\curve_fitting\Nov03 .
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Figure 9.13: Comparison of bode plots from model and experimental data for the hydraulic
actuator. The input is the voltage into the servo-valve of joint 2. The output is joint 2
angular position.

9.8 Overlay of All Phase Weights

Figures 9.13 and 9.14 overlay the results of curve fitting SAMII’s Bode data with various phase
weights.

Figure 9.14 shows that as phase weight is increased, amplitude error near the first mode
(1.7Hz) is traded off against phase error near the zero between the second and third modes (20Hz).
For the case of phase weight=0.5, the first mode is completely missed while the phase near 20Hz
is matched very well. I am going to use the parameter estimates from a phase weight of 0.1 as a
starting point in my controller design.

H.1 Matlab Files Used

H.1.1 Main Matlab File

The main Matlab file ismain_bode_fit_11_14_03.m This is the current (as of 11/24/03)
main file for Bode curve fitting. It calls several other files to run an optimization that reduces
the error between model and experimetnal bode curves. The error includes the squared sum
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Figure 9.14: Comparison of bode plots from model and experimental data for the flexible
base. The input is joint 2 angular position and the output is base acceleration.
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of magnitude errors in dB and a weighting factor times the phase error in degrees. The model
includes the first three modes of the flexible base.

This file calls the filesrun_optim_s4_m3_11_14_03 andgenbodeplots_11_14_
03.m .

H.1.2 Additional Matlab Files

curvefitparams s4 m3.m

As of 11/24/03, this function is not used in this directory.

fixed sine bode 08 22 03.mat

genbodeplots 11 14 03.m

This file generates the bode plots for one set of curve fitting results (i.e. one phase weight). This
file is called bymain_bode_fit_11_14_03.m .

load data s4 m3 11 14 03.m

This file loads experimental swept and fixed sine data. The swept sine data is loaded into global
variables used by the curve fitting cost function. This file is called bymain_bode_fit_11_
14_03.m andoverlay_fits.m .

overlay fits.m

This file loads the results from curve fitting Bode data with various phase weights. It than overlays
the Bode curves from the various weights to allow the best fit to be selected. To overlay the plots,
it calls the functionoverlaybodeplots_11_14_03.m .

overlaybodeplots 11 14 03.m

This file has 3 inputs: starting figure index, coeffscell, and pwcell. The function overlays the bode
plots from a cell array of curve fit output coeffiecents. The cell array of phase weigths (pwcell)
is used only for the legend entries. This file is called byoverlay_fits.m and is used to
overlay the output of runningmain_bode_fit_11_14_03.m multiple times with different
phase weights.

run optim s4 m3 11 14 03.m

This function runs the Matlab function fminsearch for a given set of optmization paramters (max-
imum nmber of iterations, etc.) and then outputs the results to a text file. This function is called
by main_bode_fit_11_14_03.m and uses the filesamiierr.m as the cost function for
fminsearch.
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samiierr.m

This function defines the cost function for the curve fit. The cost function is the sum of the
squared magnitude error in dB plus a phase weighting term (scalar) times the sum of the squared
phase error in degrees.

errout=samiierr(coeffsin,phaseweight)
The first input (coeffsin) is a vector of input coeffiecients. The second input is the phase

weight.
This function is called byrun_optim_s4_m3_11_14_04.m and calls the functionsamiimodel.

m, which outputs the bode magnitudes and phases for both the actuator and flexible base models
based on the vector of input coeffiecents.

samiimodel.m

This function is called bysamiierror.m . This function takes a vector of coeffiecients as an
input and outputs the bode magnitudes and phases for both the actuator and flexible base models.

coeffsin=varargin{1};

varargout{1}=act fit mag;
varargout{2}=basefit mag;
varargout{3}=act fit ph;
varargout{4}=basefit ph;

swept sine bode 08 25 03.mat

H.1.3 Verbatim Matlab Files

main_bode_fit_s4_m3_editted_verb_apndx.pdf
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Chapter 10

Pole Canceling Controller Design

The basic idea behind this controller design is to cancel the lightly damped flexible system and
replace them with more highly damped poles. A block diagram of the system is shown in Figure
10.1. This will be done by designing the pole canceling compensator shown in Figure 10.1.

One of the pairs of second order poles that need to be canceled are the closed loop poles of
the inner feedback loop that controls the angular position ofθ2. This pair of poles is given by

cancelil =

[
−4.214− 52.84i
−4.214 + 52.84i

]
(10.1)

The other two pairs of second order poles that need to be canceled are from the first and third
mode of the flexible base (the second mode poles get canceled by the numerator of the hydraulic
actuator transfer function). These poles are given by

cancelfb1,3 =


−0.3245− 10.88i
−0.3245 + 10.88i
−5.275− 156.7i
−5.275 + 156.7i

 (10.2)
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Figure 10.1: Desired vs. actual joint 2 angle for a controller with no vibration suppression.
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The compensator will have these poles that we are seeking to cancel as its zeros and the desired
replacement poles as its poles. The desired pole locations are

f1 = 3

f2 = 8

f3 = 10 (10.3)

(10.4)

where all of thef ’s, are in Hz and

ζ1 = 1

ζ2 = 1

ζ3 = 1 (10.5)

(10.6)

These desired pole natural frequencies and damping ratios are turned into pole locations by using
the relationship

dp = −ζω ± i
√

1− ζ2 (10.7)

These desired poles are given by

dp =



−18.85
−18.85
−50.27
−50.27
−62.83
−62.83


(10.8)

The desired poles are specified to be critically damped, and then the overall gain of the compen-
sator is chosen using root locus so that the closed loop poles having damping of approximately
0.7. The desired poles and zeros for the compensator are used to find the polynomials for the
numerator and denominator of the compensator transfer function by using the Matlab function
poly .

The compensator transfer function is given by

Gc =
s6 + 19.63s5 + (2.762e + 4)s4 + (2.57e + 5)s3 + (7.251e + 7)s2 + (7.293e + 7)s + (8.189e + 9)

s6 + 263.9s5 + (2.799e + 4)s4 + (1.515e + 6)s3 + (4.37e + 7)s2 + (6.299e + 8)s + (3.544e + 9)
(10.9)

Figures 10.2 and 10.3 show the root locus for the system. These loci stop at the chosen com-
pensator gain value of 0.0666. This value was chosen to place the closed loop system poles at
locations withζ ≈ 0.7. (Note that Figure 10.3 is simply zooming in on Figure 10.2 near the
origin.)
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Figure 10.2: Root locus of the mass damping system without a lowpass filter or any other
modifications.
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Figure 10.3: Root locus of the mass damping system without a lowpass filter or any other
modifications (zooming in on Figure 10.2).
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I.1 Matlab Files Used

I.1.1 Main Matlab File

The main Matlab file ismain_pole_cancellation_11_25_03.m This function is the
main function used to design a controller based on canceling the lightly damped poles of SAMII.
The initial design will be based on canceling and placing the first two lightly damped poles in a
model that includes the first three modes of the flexible base. If the third mode goes unstable as
a result (I suspect it will), then the controller will be redesigned to cancel the third mode as well.

I.1.2 Additional Matlab Files

pole cancel loci.m

This function is very similar to the fileC:\ryan\GT\Research\SAMII\Ryan_SAMII_
Wincon\system_id\without_force_torque_08_20_03\analysis\rlocus_pole_
cancel_pseudo_s_4.m . It will go further in that it will simulate the response with the third
mode of the flexible base included in the model.

The basic idea is that the controller will cancel the lightly damped poles of the flexible base
and replace them with poles with significantly higher damping.

I.1.3 Verbatim Matlab Files

pcancel_design_editted_verb_apndx.pdf
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Chapter 11

Pole Canceling Controller Implementation

This chapter shows results from implementing the controller designed in Chapter 10. Simulation
and experimental results are overlaid.

This controller does a good job of not exciting vibration by changing how a step change in
desired angle is input into the system, but it is not capable of quickly damping out a vibration
disturbance. In this sense, this controller seems to act like an input shaper.

Figure 11.5 shows the result of moving SAMII without the pole canceling compensator being
used and then turning the pole canceling compensator on to see if it quickly damps the vibration.
Obviously this didn’t work very well.

Figure 11.6 shows that the simulation does a pretty good job of predicting theθ2 response.
Figure 11.7 shows that the simulation does a decent good job of predicting the acceleration
resonse when viewed from the axis settings of Figure 11.4. Figure 11.8 shows that the simu-
lation is not as good when the response is zoomed in on.
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Figure 11.1: Desired vs. actual joint 2 angle for a controller with no vibration suppression.
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Figure 11.2: Desired vs. actual joint 2 angle for a controller with a pole canceling compen-
sator.
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Figure 11.3: Actual joint 2 angle without vibration suppression vs. a controller with a pole
canceling compensator.
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Figure 11.4: Base acceleration with and without a controller with a pole canceling compen-
sator.
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Figure 11.5: An unsuccessful attempt to recreate the Loper plot with the pole canceling
controller.

114



CHAPTER 11. POLE CANCELING CONTROLLER IMPLEMENTATIONNovember 27, 2003

−0.5 0 0.5 1 1.5 2
−2

0

2

4

6

8

10

12

14

16

θ 2 (d
eg

)

Time (sec)

Simulation
Experiment

Figure 11.6: Simulated vs. experimental response for a system with a pole canceling com-
pensator.
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Figure 11.7: Simulated vs. experimental response for a system with a pole canceling com-
pensator (zooming in). These are the same x-axis settings as shown in Figure 11.4.

115



CHAPTER 11. POLE CANCELING CONTROLLER IMPLEMENTATIONNovember 27, 2003

−0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

θ 2 (d
eg

)

Time (sec)

Simulation
Experiment

Figure 11.8: Simulated vs. experimental response for a system with a pole canceling com-
pensator (zooming in). These are the same x-axis settings as shown in Figure 11.4.
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J.1 Matlab Files Used

J.1.1 Main Matlab File

The main Matlab file isload_pcancel.m This function loads data from testing done with a
pole canceling SISO controller on 11/26/03. It then overlays the data from testing done with and
without this pole cancelation controller. It also plots data attempting to use this new controller to
recreate the Loper plot where the vibration suppression controller is turned on and the vibration
quickly goes away. This controller is essentially acting as input shaper, so the result is not as
impressive as the plot from Loper’s thesis.

The design of this controller is done in the Matlab filemain_pole_cancellation_11_
25_03.m , which calls the filepole_cancel_loci.m .

This file also overlays experimental and simulation data. The simulation data comes from the
Simulink filepole_cancel_m3_sim.mdl .

J.1.2 Additional Matlab Files

bigstep with pcancel.mat

compensator.mdl

loper attempt.mat

pole cancel m3 sim.mdl

pole cancel switching sim.mdl

simdata.mat

step no pcancel.mat

step with pcancel.mat

J.1.3 Verbatim Matlab Files

pcancel_overlay_verb_apndx.pdf
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SupportFiles/MatlabFiles/load_pcancel.m
SupportFiles/MatlabFiles/bigstep_with_pcancel.mat
SupportFiles/MatlabFiles/compensator.mdl
SupportFiles/MatlabFiles/loper_attempt.mat
SupportFiles/MatlabFiles/pole_cancel_m3_sim.mdl
SupportFiles/MatlabFiles/pole_cancel_switching_sim.mdl
SupportFiles/MatlabFiles/simdata.mat
SupportFiles/MatlabFiles/step_no_pcancel.mat
SupportFiles/MatlabFiles/step_with_pcancel.mat
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