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SUMMARY 
 

 
 A rigid (micro) robot mounted serially to the tip of a long, flexible (macro) robot 

is often used to increase reach capability, but flexibility in the macromanipulator can 

make it susceptible to vibration.  A rigid manipulator attached to a flexible but unactuated 

base was used to study a scheme to achieve micromanipulator positioning combined with 

vibration damping of the base.  Inertial interaction forces and torques acting at the base of 

the rigid robot were studied to determine how to use them to damp the base vibration.   

The ability of the rigid robot to create inertial interactions varies throughout the 

workspace.  There are also �inertial singularity� configurations where the robot loses its 

ability to create interactions in one or more degrees of freedom.  A performance index 

was developed to quantify this variation in performance and can be used to ensure the 

robot operates in joint space configurations favorable for inertial damping.  When the 

performance index is used along with appropriate vibration control feedback gains, the 

inertia effects, or those directly due to accelerating the rigid robot links, have the greatest 

influence on the interactions.  By commanding the link accelerations out of phase with 

the base vibration, energy will be removed from the system.  This signal is then added to 

the rigid robot position control signal.  Simulated and measured interaction forces and 

torques generated at the base of a rigid robot are compared to verify conclusions drawn 

about the controllable interactions.  In addition, simulated and experimental results 

demonstrate the combined position control and vibration damping ability of the scheme.  
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CHAPTER I 

 
 

INTRODUCTION 
 
 
 

1.1 Motivation 
       

The objective of this research was to develop a combined position and enhanced 

vibration control scheme for a rigid manipulator attached to a flexible base.  The 

configuration is similar to a macro/micromanipulator (Figure 1-1), which has links that 

are long and lightweight with a rigid robot attached serially to the end.  Macro/micro 

manipulators are desirable for certain uses, because the macromanipulator can provide 

long reach capability by moving the robot to the general area of interest where it can then 

be used for fine-tuned positioning.  These are often used to perform tasks that humans 

may be incapable of doing or that are dangerous for humans.   

One application is in the nuclear industry where macro/micromanipulators are used to 

remove nuclear waste from underground storage tanks [25].  In the application described 

in the reference, a 39 foot, seven degree of freedom long-reach manipulator was used 

with a rigid end effector to clean seven storage tanks at Oak Ridge National Laboratory 

from 1996-2000.  Two end effectors were used: one type measured the radiation field, 

while the other scarified the tank walls.   
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          Figure 1-1          Figure 1-2 
Macro/Micro Manipulator    Flexible Base Manipulator 
 
 
 
Another growing application is in space, where long reach capability is needed, but 

weight is crucial [41,56,77,93].  The space shuttle has used a remote manipulator system 

(RMS), or Canadarm, which was initially launched and used in 1981.  One problem is 

that approximately 1/3 of the time spent by astronauts in operation of the RMS is spent 

waiting for vibration to decay [41].  The second-generation system, Space Station 

Remote Manipulator System, or Canadarm 2, is a seven-jointed arm that was designed to 

maneuver large payloads around the International Space Station.  It will sometimes be 

used with the Special Purpose Dexterous Manipulator to provide specific maintenance 

tasks. 

The problem is that flexible links are difficult to control and are susceptible to 

vibration induced by movement of the robot itself or by external disturbances.  The many 

degrees of freedom involved make control of the coupled system a complex task.  This 

Distributed 
Macromanipulator 

Properties 
, ,y yyθ θ&& &&&

, ,x xxθ θ&& &&&
, ,z zzθ θ&& &&&

1θ

2θ
3θ
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research considers the base of the rigid robot to be flexible, where the base motion is 

similar to that due to vibration at the tip of a flexible macromanipulator with locked joints 

(Figure 1-2).  It is assumed for this work the joints of the macromanipulator are not 

actuating so the only vibration in the system is due to externally applied disturbances or 

motion of the rigid manipulator.     

Many researchers have tackled the problem of developing control schemes to 

eliminate unwanted vibration in flexible manipulators.  One area involves determining 

trajectories that will avoid or minimize inducing vibration; however, these schemes are 

not useful for controlling vibration once it occurs.  The macromanipulator actuators are 

not a good option for vibration damping due to bandwidth limitations and non-collocation 

of the actuators and end point vibration.  This creates a non-minimum phase problem due 

to time delays, further exacerbated by flexibility in the link(s).  In addition, since only 

gross positioning capability is really needed for the macromanipulator, it is an 

unnecessary increase in cost and system complexity to use its actuators for vibration 

control in addition to their already difficult task. 

The use of the rigid manipulator to damp vibration in the macromanipulator has 

proven to be a promising area.  The micromanipulator produces inertial forces and 

torques that act as disturbances to the macromanipulator under decoupled control.  Under 

coupled control, these inertial effects can be used as damping forces and torques and 

applied directly to the tip of the macromanipulator.  This also makes the system 

minimum phase, further reducing the complexity of the control task.  In addition, it is 

much easier to provide high bandwidth actuators for a small robot arm than for a large 
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one, so its actuators can respond more quickly and efficiently to provide large inertial 

forces and torques.  Previous methods of damping vibration in this manner include 

energy dissipation methods and inertial damping methods.  The goal here is to command 

the rigid robot to act as an active vibration damper, damping the motion of the 

macromanipulator at the natural frequencies of the system.  These along with other 

methods of controlling macro/micromanipulators are discussed in more detail in Chapter 

2. 

 

1.2 Problem Overview 
 

In this work, the rigid robot control scheme must perform the dual task of damping 

unwanted base vibration (macromanipulator vibration) while providing position control 

of the rigid robot.  On the one hand, if the motion of the micromanipulator or combined 

system is completely prescribed by the task, this method is not useful.  However, under 

circumstances where the task will allow small movements of the rigid robot to damp the 

vibration, this technique can be very effective.  After all, if the system is vibrating 

uncontrollably the system performance is impacted.  The controlled interactions are 

collocated with the vibration at the tip of the macromanipulator, and the rigid robot can 

respond quickly to create the inertial damping forces and torques.  The goal here is to 

reduce the vibration as quickly and efficiently as possible so the system can continue with 

its task.  This method requires no hardware modifications other than some type of 

measurement of the vibration. 
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Most of the literature addresses macro/micromanipulator position control or vibration 

control alone, but few researchers address both.  The authors that have addressed both 

assume limited base flexibility, thereby limiting the applicability of the work.  In 

addition, simulations and hardware demonstrations have been limited mostly to planar 

translational vibration.  Finally, operation throughout the workspace has not been 

addressed, in particular at locations where coupling effects between the macro and 

micromanipulator are unsuited to vibration damping.   

The control scheme described in this dissertation was tested in simulations and 

experiments in two main scenarios.  The first was with the robot operating at a desired 

joint space configuration and tested its ability to damp vibration induced by an applied 

disturbance.  The second scenario was for point-to-point motion where the rigid robot is 

moving from an initial to a final joint space configuration in a given time period.  Both of 

these allow flexibility in choosing between alternate inverse kinematic joint space 

configurations.  If the joint space configuration of the rigid robot is a prescribed part of 

the control scheme, another method of damping may be required.     

 

1.3 Contributions 
 

The contributions of this thesis are: 

1.  Extension of the macro/micromanipulator control problem to multiple degrees of 

freedom by considering the analogous problem of a rigid manipulator mounted on a 

flexible base. 
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2.  Investigation of inertial singularities and variation in inertial damping performance 

throughout the workspace.   

3.  Development of a control scheme that provides active base vibration damping in 

parallel with rigid robot position control and establishment of appropriate vibration 

control gain limits.  

4.  Verification of the above via simulation. 

5.  Experimental work including verification of the accuracy of the interaction force 

and torque predictions and demonstration of the effectiveness of the control scheme on a 

realistic multi-degree of freedom testbed. 

 

1.4 Organization and Overview 
 

This dissertation is organized in the following manner: 

Chapter 1 discusses the motivation of the research, contributions of the work, and 

outlines the dissertation. 

Chapter 2 reviews the current state of literature on the subject of 

macro/micromanipulator control and limitations of previous research.   

Chapter 3 describes modeling of the flexible base manipulator.  A Lagrangian 

approach with a finite number of assumed modes was used to represent the flexible 

manipulator, while a recursive Newton-Euler formulation was used to derive expressions 

for the interaction forces and torques acting between the macro and micromanipulator.  

The general form of these interactions is: 
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0 0 0 0 0

( ) ( , ) ( ) ( ) ( , , , )

( ) ( , ) ( ) ( ) ( , , , )             (1-1)
IF f f i j f f fc
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F θ θ θ θ θ θ θ q q q θ θ

τ θ θ θ θ θ θ θ q q q θ θ
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where θθθθ represents the rigid robot joint variables and q represents the flexible 

manipulator generalized coordinates.  The rigid robot configuration, θθθθ, joint velocities 

and accelerations, and flexible base velocities and accelerations drive the interactions.  

The goal was to study these interactions in order to determine how to use them in the 

control scheme to damp the macromanipulator vibration.  

Chapter 4 discusses in more detail the controllable interactions, or the first two terms 

in each equation in 1-1.  A performance measure is introduced which predicts the 

effectiveness of the rigid robot in creating these interactions.  The rigid inertia effects 

(Bf(θθθθ) and Bτ0(θθθθ)) are particularly important for two reasons.  First, the rigid robot must 

have enough inertia to effectively apply interaction forces and torques to the 

macromanipulator.  The ratio of the rigid inertia to flexible inertia effects becomes an 

important part of the performance index, discussed in Chapter 5.  Second, there are joint 

workspace configurations where these matrices become singular.  These �inertial 

singularities� represent physical limitations in that an inertia force or torque cannot be 

created in one or more degrees of freedom.  The variation in performance is driven by the 

joint space configuration of the rigid robot, so the performance measure can be used to 

choose joint space configurations better suited for inertial damping.  The inertia effects 

dominate the interactions in most non-singular configurations.  However, the nonlinear 

rigid effects may also become significant in certain cases and these are also discussed 

here.   
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The control scheme is discussed in Chapter 5.  The overall schematic is shown in 

Figure 1-3.  The flexible base vibration controller takes the form: 

 

 ( )*                                                            (1-2)ID K= −τ θ x&  

 

where ID(θθθθ) represents an inverse dynamics function [4,19] designed to cancel the 

significant rigid robot dynamics and x represents the motion of the flexible base.  The 

rigid robot motion will be commanded to absorb the vibration energy of the flexible base.   

 
 
 

Figure 1-3 
Overview of Control Scheme 

 
 

Chapter 6 discusses simulations of vibration damping of a three degree of freedom 

anthropomorphic robot mounted on a flexible base.  Simulations demonstrating 

disturbance rejection as well as the use of the performance index in predicting better joint 

space configurations for vibration damping during commanded motion are presented.  
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Chapter 7 discusses the experimental testbed and presents results from two areas of 

testing.  First, predicted and measured interaction forces and torques generated at the base 

of a rigid three degree of freedom anthropomorphic robot are presented, which verified 

many of the results presented in Chapter 4.  Second, the ability of the controller to damp 

vibration on a multi-degree of freedom testbed was tested.  The macromanipulator 

consists of two flexible links in a fixed joint configuration.  Three links of a six degree of 

freedom micromanipulator were used for vibration damping.  Some promising results are 

presented demonstrating overall vibration energy from the system.  However, several 

implementation issues arose that limited the effectiveness of the scheme on the testbed.  

These are discussed in more detail as well as proposed means of addressing these issues 

for future work. 

Chapter 8 summarizes the results and suggests area of further research.  Finally, 

Appendix A includes the equations for the interaction forces and torques for four typical 

robot configurations. 
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CHAPTER II 

 
 

LITERATURE REVIEW 
 
 
 

2.1 Introduction 
 

 This chapter reviews the general topic of macro/micromanipulator control.  

Macro/micromanipulators were introduced in the early 1980s as a means of improving 

endpoint control of flexible manipulators, which were becoming more common for 

applications where long reach capability was needed.  Positioning errors due to flexibility 

and other inaccuracies in the links of the macromanipulator are compensated for by the 

micromanipulator. 

First, literature on modeling flexible and rigid manipulators is reviewed.  Since this in 

itself is a very broad area, the research discussed here is specifically relevant to modeling 

combined flexible/rigid systems.  Next, general methods of controlling 

macro/micromanipulators are discussed.  The problem that becomes quickly apparent is 

the large number of degrees of freedom involved and complexity of the resulting control 

problem.  The links of the macromanipulator are susceptible to vibration, so there are 

additional degrees of freedom that need to be controlled as well as the rigid coordinates.  

One option to reduce the complexity of the problem is to decouple control of the rigid 

and flexible robots.  In this case, the macromanipulator provides gross positioning while 

the rigid robot provides the fine-tuned positioning.  However, there are also problems 
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with this technique.  The rigid robot produces inertial forces and torques which can act as 

disturbances to the macromanipulator and worsen the vibration problem.  In addition, 

with larger and more flexible macromanipulators, vibration amplitudes can become too 

large for the rigid robot to compensate for.  Thus another area of research evolved which 

focused on methods of commanding the micromanipulator to reduce vibration in the 

macromanipulator.  One way is to command the rigid robot using trajectories that will 

reduce these disturbances.  An alternate approach is to use the disturbances to damp the 

vibration, which is the basis of the work described in this dissertation.  The current state 

of research in this area is reviewed as well as limitations of the work performed thus far.   

In addition, there has been a great deal of related research in the area of space 

robotics.  This area has not been widely recognized as being related to the problem of 

earth-based macro/micromanipulator control.  However, the approach taken in this thesis, 

where the rigid robot is considered attached to a flexible base, is very similar to space 

robotics research that considers a rigid robot mounted to a floating base (spacecraft).  

Some of the applicable space robotics research is also reviewed here. 

 

2.2 Flexible and Rigid Manipulator Modeling 
 
 
2.2.1 Flexible Robot Modeling 
 

There are many methods available to model flexible link robots.  Since the links are 

distributed parameter systems, their motion is described by partial differential equations 

instead of ordinary differential equations and hence modeling can become very 
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challenging.  In addition to the nonlinear rigid dynamics commonly found in robotic 

systems, flexible manipulators also exhibit elastic behavior.   

Book [8] developed a recursive Lagrangian approach for modeling flexible link 

robots.  Describing the position of a point on a flexible link requires both rigid and elastic 

coordinates, so he suggested the use of 4 x 4 transformation matrices for more compact 

representation.  By choosing a finite number of assumed modes to model the elastic 

motion, the position of a point along each flexible link can be written in terms of the rigid 

and flexible coordinates.  Expressions for kinetic and potential energy of the system can 

then be developed.  The kinetic energy terms consist of translational and rotational 

energy of each link.  Potential energy terms consist of elastic bending, gravity, and 

shearing deformation effects.   

Several authors have considered the relative importance of the energy terms and 

under what circumstances certain effects may be neglected [46,52,72,83].  Most authors 

involved in modeling flexible manipulators assume Euler-Bernoulli bending theory 

applies.  When this is the case, rotational inertia terms may be assumed negligible, and 

potential energy terms only need to include elastic bending and gravity effects [83].  The 

resultant equations are integrated over the spatial variable and used with Lagrange�s 

equations to derive the equations of motion.  One advantage of this method is that the 

energy terms can include as much or as little detail as needed.  Modal damping may also 

be added if desired.  Regardless of the method used to derive them, the equations of 

motion take the form: 
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The generalized forces are the joint actuation torques and contact forces and torques.  In 

the case of a macro/micromanipulator, the contact forces and torques will be those 

created by the micromanipulator.   

Lee [32], Lew [34], and Obergfell [53] used this method to model a two-link flexible 

robot at Georgia Tech called RALF (Robot Arm, Large and Flexible).  Other examples of 

modeling a single flexible link can be found in Cannon [15], Loper [42], Nataraj [52], 

and Smart and Wiens [72].   

 

2.2.2 Rigid Robot Modeling 
 

Common methods of modeling rigid robots are a Lagrangian approach or a Newton-

Euler formulation.  Detailed descriptions of both methods can be found in Craig [18], 

McKerrow [48], or Sciavicco and Siciliano [61].  The equations of motion take the form: 
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2.2.3 Coupled Macro/Micromanipulator Models 

One method of modeling macro/micromanipulators is using the recursive Lagrangian 

approach mentioned above and treating the last few links as rigid.  However, this quickly 

becomes long and tedious.  Lew [34] developed a more efficient method of deriving the 

equations of motion of two robots connected serially.  He concentrated on identifying the 

coupling dynamics between the two manipulators assuming known models for each.  The 

coupled equations of motion take the form: 

 

/

/

( , ) ( , ) ( , , , ) 0 0
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The notation used here is slightly different from the notation used in [34] and his papers 

[35-40] in order to be consistent with the notation used in equations 2-1 and 2-2.  Mb, Cb, 

and Kb represent macromanipulator properties and are defined along with q in equation 

2-1.  Bτ and Nτ represent the rigid robot dynamics and are defined along with θθθθ in 

equation 2-2.  Mb/r and Mbr are coupling inertia matrices, and Cbr and Cb/r are nonlinear 

coupling terms (gravitational effects are included in the nonlinear terms).  It is further 
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assumed the macromanipulator is not actuating so the only joint torques and rigid 

coordinates that vary are those associated with the rigid robot.  Most of the 

macro/micromanipulator control literature uses this form of the coupled equations of 

motion as a baseline model.   

Sharf [63] introduced a means of effectively decoupling the macro and 

micromanipulator models by finding expressions for the reaction forces acting between 

the two bodies.  This is equivalent to equation 2-3, the only difference being the explicit 

definition of the interactions. 

 
 

2.3 General Macro/Micromanipulator Control Approaches 

The control of flexible manipulators has been studied extensively.  Control of the 

distributed, nonlinear systems is difficult and researchers have examined end point 

sensing, robust control, vibration suppression, and command shaping techniques, among 

others, to better control them.  Book [9,10] discussed many of the problems associated 

with controlling flexible manipulators.  As discussed in section 2.2.1, modeling is 

difficult but achievable if the system modes of interest can be limited to a finite number 

of modes.  The control problem is extremely complicated for many reasons.  First, 

flexible manipulators are susceptible to vibration, either induced by movement of their 

long, flexible links or external disturbances.  Second, the number of control variables 

(joint variables) is less than the number of mechanical degrees of freedom, which include 

both the rigid and flexible coordinates.  Third, the dominant closed loop poles of the 

system do not become more stable with increasing position control feedback gains.  This 
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limits the achievable bandwidth to about 1/3 that of a rigid manipulator [10].  Thus, lower 

bandwidth actuators are typically used and they may not be fast enough to respond to the 

vibration.  In addition, the actuators are located at the joints of the macromanipulator 

while the vibration of concern is at the end point.  This non-collocation issue further 

complicates the control problem.  Non-minimum phase dynamics can result and, 

combined with the many other control issues associated with flexible manipulators, may 

threaten system stability.  

Sharon, Hogan, and Hardt introduced macro/micromanipulators in the early 1980s as 

a means of improving endpoint control of flexible manipulators [64,65].  They showed 

that a rigid robot mounted serially to a flexible manipulator could be used to compensate 

for position errors caused by macromanipulator flexibility and other inaccuracies.  The 

end point position control bandwidth was chosen to be approximately 15 times the first 

natural frequency of the macromanipulator.  Since the micromanipulator inertia is 

relatively small, it can respond quickly to the rapid transients of the macromanipulator 

vibration. 

Much of the research in the control of macro/micromanipulators involves designing 

specialized coupled control schemes.  The many degrees of freedom involved combined 

with additional challenges associated with controlling the flexible links make coupled 

control a difficult task.  These control schemes fall into three general categories.  First are 

schemes where both the macromanipulator and micromanipulator are controlled 

concurrently.  The complexity of these schemes makes them difficult to implement but 

may be the only solution in some cases.  The second area involves decoupled 
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macromanipulator control schemes designed to control or reduce the vibration.  Since 

flexible manipulators have been in use for many years, there is a large pool of applicable 

research that can help reduce vibration, including input shaping.  A third area considers 

the decoupled micromanipulator controller.  These include schemes that use the rigid 

robot to compensate for macromanipulator position error as well as schemes that actively 

use the micromanipulator to reduce the vibration.  The latter is the basis for this research 

and the background in this area is described in more detail in the next section. 

One well-known method of improving trajectory tracking is to use an inverse 

dynamics function to cancel undesirable system dynamics.  Bayo and Moulin [4] and 

Devasia and Bayo [19] considered the control of flexible manipulators through the 

solution of the system inverse dynamics.  However, one major problem with applying 

this method to a flexible link robot is that it is a non-minimum phase system.  When the 

dynamics are inverted the inverse dynamics model contains both positive and negative 

real eigenvalues.   

Kwon and Book [31] investigated inverse dynamic trajectory tracking for a single-

link flexible manipulator.  Their goal was to develop a time domain inverse dynamics 

method that enabled a flexible manipulator to follow a given end point trajectory 

accurately without overshoot or residual vibration.  They first modeled the manipulator 

using the assumed modes method described in section 2.2.1 and developed the inverse 

dynamics model.  The tracking controller combined an inverse dynamics function for 

feedforward control with a joint feedback controller.  They worked around the non-

minimum phase issue by extending the solution set to include a non-causal solution and 
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split the inverse dynamics into causal and anticausal parts.  They showed in simulation 

and experiment the effectiveness of the controller in producing fast, vibration-free motion 

of a single flexible link manipulator.  This work provided a valuable contribution in 

showing that, with an understanding of the unique problems associated with flexible 

systems, inverse dynamics could be implemented on them. 

Several researchers have considered ways to reduce the complexity of combined 

macro/micromanipulator control schemes.  Singh and Schy [69] used a control law that 

decouples the rigid and elastic behavior.  They considered a PUMA-type robot with three 

rotational joints mounted on a space vehicle, where the first two links are rigid and the 

last link flexible.  The elastic dynamics are further decomposed into two subsystems 

modeling the transverse vibration of the elastic link in two orthogonal planes.  A 

proportional-integral-derivative (PID) controller is used on the joint angle errors.  Two 

fictitious forces acting at the tip of the flexible link are used to damp the elastic 

oscillations.  The scheme was shown effective and robust to modeling errors in 

simulation.  However, practical implementation would require a realistic way to provide 

the elastic control forces.   

Lew considered a different strategy of bracing the macromanipulator [34].  He 

developed a hybrid controller for flexible link manipulators that make contact with the 

environment at more than one point and proved its stability.  He was able to show 

effective position and force tracking control.  Experimental work was performed at 

Georgia Tech with a rigid robot mounted on the end of a two link flexible manipulator 
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and demonstrated that the use of this technique could effectively reduce vibration in the 

macromanipulator in the planar case.   

Yim and Singh [90] used an inverse control law combined with a predictive control 

law for a macro/micromanipulator.  The inverse control law was used for end point 

trajectory control of the rigid micromanipulator and is based on the inversion of the 

input/output map.  The predictive controller was used for end point control of the flexible 

macromanipulator.  It was developed for precise trajectory tracking and designed so the 

flexible dynamics remained stable.  The controller was derived by minimizing a quadratic 

function of the tracking error, elastic deflection, and input control torques.  The stability 

of the scheme was proven and its effectiveness demonstrated via simulations.  They also 

considered the same predictive control law [89,91] except with a sliding mode controller 

for the micromanipulator.  The micromanipulator control scheme was variable structure 

control, which is more insensitive to modeling errors.  The sliding mode controller was 

developed with the sliding surface functions of tip position, its derivative, and the integral 

of the tracking error.  Its purpose was to ensure precise trajectory tracking of the end 

effector.  Simulations of a single flexible link with a two rigid link micromanipulator 

indicated that good end point trajectory control and elastic mode stabilization is 

achievable.   

Another wide area of research involves input shaping or trajectory modification 

techniques to avoid inducing vibration during commanded moves.  These techniques 

reduce vibration in a system by convolving an impulse sequence with the desired 

command.  When the impulse sequence is chosen properly, the resulting reduction in 
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vibration can be drastic, even in the presence of modeling uncertainties.  The only 

information required is the basic properties of natural frequencies and damping ratios of 

the modes of concern.   

Singer and Seering [68] reshaped an impulse input into two impulses, where the 

second was delayed by ½ the period of vibration to be avoided.  The shaper was placed 

outside the feedback loop.  When more than two pulses are used, sensitivity to modeling 

errors is reduced.  The effectiveness of the technique was evaluated on a Space Shuttle 

Remote Manipulator System (RMS) simulator at Draper Laboratory and showed a factor 

of 25 reduction in endpoint residual vibration for typical moves of the RMS.  Banerjee 

[3] also showed the effectiveness of input shaping techniques on a shuttle experiment 

with a very flexible payload.  Simulated spin up and slew motion of the shuttle with two 

150-meter long flexible antenna booms indicated much less residual vibration in the 

flexible antennas when the motion was commanded with a three impulse shaper.   

Singhose, Singer, and Seering showed that input shaping leads to much better 

performance than other filtering techniques (Butterworth, notch, etc.)  [70].  In particular, 

they compared the impulse sequence length, residual vibration, and robustness to 

uncertainties in the system model.  Each method was used to shape a step command 

given to a harmonic oscillator.  The results clearly indicated the input shapers are 

significantly shorter, yield considerably less vibration, and are far more insensitive to 

modeling errors than the filters.  Singhose and Singer [71] also showed that the use of 

input shapers does not significantly affect trajectory tracking.  These techniques could be 
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applied to the macromanipulator to reduce vibration created by its motion, or applied to 

the micromanipulator, or both.  

Command shaping is a closely related area except typically refers to a scheme that 

has a variable delay between pulses.  This is important for flexible manipulators because 

the natural frequencies of the system and required delay between pulses vary with 

workspace location.  Magee and Book [45] applied command shaping techniques to 

reduce vibration induced by the motion of a rigid robot mounted on a flexible base.  They 

used a finite impulse response filter on the micromanipulator joint position error.  A 

general three term filter was developed that can produce both positive and negative filter 

coefficients depending on the delay time value.  Experimental work was performed using 

a small articulated robot attached to a much larger, flexible robot.  The smaller robot was 

commanded to move under proportional-derivative (PD) control with and without the 

filter.  The use of the filtering method resulted in a vibration amplitude reduction of 

nearly 60%.  Input and command shaping techniques can be very useful for reducing 

vibration created by commanded movement of the robot.  However, they require 

information about the system and only help in the case of vibration induced by the 

manipulator itself.  Vibration caused by external disturbances remains unchecked. 

Xie, Kalaycioglu, and Patel [87] developed an algorithm to command the correct 

macromanipulator actuator pulses at the end of a maneuver to cancel observed vibration.  

This algorithm was designed specifically for the Space Shuttle Remote Manipulator 

System (RMS).  As noted in Chapter 1, the RMS is a realistic example of a flexible 

manipulator and moving it tends to induce vibration.  The technique described in this 
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paper is termed �pulse active damping.�  The concept is to excite vibration exactly 

opposite the observed vibration so cancellation is achieved.  This concept is similar to 

input shaping except that it is applied to the system once the vibration is initiated and 

measured.  Real-time system identification is then performed to acquire the natural 

frequencies and damping ratios of the system.  The desired joint torque needed at the 

shoulder to cancel the oscillations is applied at half the natural frequency of the vibration 

(180° out of phase), thereby canceling it.  Although this technique was shown to be 

effective in simulation, the large inertia of the flexible arms, non-collocation of the 

macromanipulator actuators and the end point, and limited actuator bandwidths could 

make it challenging to implement.      

Other researchers studied the use of the micromanipulator to compensate for 

displacement errors caused by the macromanipulator flexibility.  Ballhaus and Rock [2] 

developed a scheme where the macromanipulator would move the rigid robot within 

range of the desired end point position.  If the desired relative tip position was within 

reach, a low gain PD controller was used to command the final micromanipulator 

position.  If not, the rigid robot was set to a nominal position.  Experimental work on two 

.52-meter flexible links with a two degree of freedom rigid micromanipulator 

demonstrated the effectiveness of this technique.  The low endpoint gains ensured low 

interactions.  However, the authors also noted that with increasing gains the interaction 

forces increase and can lead to instability.   

Yoshikawa, Hosoda, Doi, and Murakami [94] developed an endpoint tracking control 

algorithm that consists of a PD macromanipulator controller for global positioning 
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combined with a dynamic trajectory tracking control law for the micromanipulator.  The 

micromanipulator control scheme was designed to account for the dynamics of the 

system with a nonlinear state compensator, which linearizes the closed loop system.  The 

ability of the method to achieve precise positioning was demonstrated on a small-scale 

laboratory setup consisting of a macromanipulator with two flexible links and a two link 

rigid robot for the micromanipulator.  However, with larger and more flexible 

macromanipulators with larger amplitudes of vibration, these techniques become less 

effective.  In addition, the base vibration remains uncontrolled.   

 

2.4 Control and Coupling of Free-Flying Space Robots 

Another wide area of study that has some applicability to macro/micromanipulator 

control has been in the analysis and control of free-flying space robots.  Although some 

principles are different since space robots do not have a fixed inertial base, some aspects 

of this research can be applied.  Some of these concepts have already begun to be applied 

to some of the control techniques discussed in section 2.5. 

Much work has been done to understand the dynamic interactions between a robot 

and a free-floating base.  Torres, Dubowsky, and Pisoni [77,78] developed a �coupling 

map� as an analytical tool to describe dynamic interaction between a space manipulator 

and its base.  The coupling map was formed from the translational inertia of the coupled 

macro/micromanipulator weighted by the stiffness of the macromanipulator.  This 

provides a measure of the inertia forces acting between the two bodies and a measure of 

the strain energy of the flexible system.  It could then be used to find paths of low energy 
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coupling that would result in little interference between the robot and its base, or �hot 

spots� where the degree of coupling is large.  Its effectiveness was evaluated 

experimentally on a three link planar manipulator mounted to a flexible beam. 

Xu and Shum [88] proposed a coupling factor to characterize the degree of dynamic 

coupling between a spacecraft and a robot mounted to it.  The goal was to use this factor 

to find robot motions that minimize the interference to the spacecraft.  Jiang [28] 

proposed a dynamic compensability measure and dynamic compensability ellipsoid to 

quantify the degree of coupling between a robot and a flexible space structure.  The 

compensability measure predicted the ability of the robot to compensate for the end-

effector position error resulting from the flexible displacements.  This measure was used 

to find the additional joint motion that would compensate for the end effector error. 

Papadopoulos and Dubowsky [56] discussed the problem of �dynamic singularities� 

in free-floating space manipulators.  The spacecraft is assumed uncontrolled and will 

move in response to manipulator motion.  They first assume a fixed inertial base at the 

center of mass of the system and find the Jacobian of the end effector written in terms of 

a coordinate system with its origin there (J*).  When J* is not of full rank, the robot is in 

a workspace location where it is unable to move its end-effector in an inertial direction.  

These dynamic singularities depend upon the inertia properties of the robot and are also 

path dependent.  They are a function of the manipulator joint space only and do not 

depend on spacecraft orientation.  The singularities consist of the typical kinematic 

singularities plus infinitely more dynamically singular configurations.  These are similar 
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to �inertial singularities� discussed later in this dissertation, where the rigid robot cannot 

create an interaction force or torque in one or more degrees of freedom. 

Yoshida, Nenchev, and Uchiyama [93] considered vibration suppression control of a 

flexible space structure consisting of a robot mounted on a free-floating base.  There are 

two parts to this work: reactionless motion control path planning and a vibration control 

subtask.  The first subtask involves a technique called �reaction null space� where robot 

trajectories are selected to avoid creating dynamic reaction forces at the base of the 

manipulator.  This paper considers the interactions between the two as a generic wrench, 

which is a function of the robot parameters, joint velocities, and joint accelerations.  This 

quantity is then integrated to define the coupling momentum of the system.  The reaction 

null space consists of trajectories that keep the coupling momentum constant so the 

interaction wrench is zero.  In order for these paths to exist, the robot must have 

kinematic or dynamic redundancy, a selective reaction null space (when base flexibility is 

only an issue in limited degrees of freedom), or a singular rigid inertia matrix.  

Reactionless paths were determined for a simulated space based robot and verified to be 

effective on their experimental testbed, which consisted of a two link rigid robot mounted 

on a planar flexible base.   

They also noted that the orthogonal complement of the reaction null space could be 

used to achieve maximum coupling, and thus could be useful for the vibration 

suppression subtask.  Here they assume the robot is initially stationary so nonlinear 

effects are negligible.  Furthermore, the flexible deflections are assumed small so the 

inertia submatrices are functions of the rigid joint variables only.  The vibration control 
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subtask commands the rigid inertia effects proportional to the base velocity so damping is 

added to the system.  This is similar to concepts by Lew and Moon [35-38] and Sharf 

[63] that will be discussed in section 2.5. 

Yoshida and Nenchev [92] linked the field of space robots with the flexible base 

manipulator control problem.  They compared several types of what they termed �under-

actuated mechanical systems�, including a flexible base manipulator and a free-floating 

manipulator, and pointed out similarities and differences between the two.  The free-

floating robot was considered mounted to an inertia, while the flexible base manipulator 

was considered a rigid robot mounted to a mass-spring-damper system.  The additional 

difference is the existence of a base constraint force for the flexible base manipulator.  

They pointed out the �reaction null space� is a common concept between the 

configurations.  Thus, this concept could be valuable in the case of a redundant 

macro/micromanipulator to avoid or reduce disturbances created by commanded 

movements.  

 

2.5 Micromanipulator Vibration Damping Techniques 

The complexity of the control schemes required for macro/micromanipulator control 

reviewed in section 2.3 led to an area of research in which the micromanipulator is used 

to actively damp vibration in the macromanipulator.  The control scheme becomes much 

less complex and the rigid robot actuators are typically able to respond more quickly to 

the vibration.  The rigid robot can apply forces and torques directly to tip of the 

macromanipulator where the vibration is usually largest, and this also results in nearer 
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collocation of the actuators and the vibration.  This technique can be used to reduce 

vibration that exists in the system or is induced by robot motion or external disturbances.   

 

2.5.1 Energy Dissipation Methods 

Torres, Dubowsky, and Pisoni [79] introduced a method entitled Pseudo-Passive 

Energy Dissipation (P-PED) for macro/micromanipulator vibration control.  They assume 

locked macromanipulator joints while the micromanipulator performs its functions, so the 

system can be considered a redundant rigid manipulator mounted on a highly flexible 

supporting structure.  The rigid manipulator is first moved into place, and then the 

controller is switched to the P-PED gains.  These gains are chosen to maximize the 

energy dissipated by the rigid robot, essentially commanding the actuators of the robot to 

behave as passive linear springs and dampers during this phase of control.  This method 

was shown effective in two degrees of freedom.  However, this scheme is only applicable 

to a limited class of problems; i.e. those that allow the micromanipulator to be used 

exclusively for vibration damping when under P-PED control.  After the P-PED 

controller eliminates the vibration, the original system controller is used.  In addition, this 

technique uses measured rigid joint states only and assumes vibration in the 

macromanipulator is large enough to create motion in the micromanipulator.  In systems 

where the actuators are highly nonlinear or demonstrate a large amount of friction, such 

as hydraulic actuators, the base vibration will not be observable in the rigid robot joint 

motion.  Finally, it also requires the full macro/micromanipulator model in order to 

determine the appropriate P-PED gains.   
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Vliet and Sharf [81] introduced another energy dissipation method entitled impedance 

matching (IM).  First, they developed an expression for the power dissipated by the rigid 

robot, *τ θ& , where ττττ represents joint actuation torques and θ& represents the rigid robot 

joint velocities.  By assuming constant amplitude harmonic joint motion at a single 

frequency, an expression for the joint velocities can be found.  Then, assuming the use of 

a rigid joint PD controller, an expression for the joint torques can be found and PD gains 

selected to maximize the power dissipated by the rigid robot.  The same limitations apply 

as for the P-PED method, except no macromanipulator information is needed.   

Vliet also discusses in his thesis limitations associated with the P-PED method, 

further discusses the coupling map described in section 2.4, and proposes some additional 

measures of coupling [80].  One is an accelerative damping measure based on the 

Euclidean norm of the eigenvalues of a matrix that consists of the rigid robot inertias and 

the macromanipulator stiffnesses.  Another coupling measure he proposes is a modal 

inertia map, which is derived from the joint torques required to hold the rigid robot in 

place as the macromanipulator vibrates.  He also presents in his thesis and in [81] 

experimental work comparing the effectiveness of both the P-PED and IM methods in 

damping vibration in a single flexible link using a three degree of freedom rigid 

manipulator. 

The P-PED and IM methods both assume the robot is first moved into place and then 

the gains are switched to the vibration control gains.  Thus, energy is dissipated from the 

flexible manipulator only when the vibration control gains are used.  They also rely on 
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the assumption that coupling effects between the rigid and flexible manipulator are large 

enough to produce significant micromanipulator joint motion. 

 

2.5.2 Inertial Damping Control 

These schemes use sensory feedback of the base vibration to command the rigid 

manipulator to create the appropriate inertial interactions to actively control the base 

vibration.  Lee and Book [11,33] developed a dual position and vibration damping 

controller for a macro/micromanipulator and proved its stability.  They considered the 

rigid robot from the perspective that it has the ability to apply �inertial damping forces� 

onto the tip of the flexible robot.  Dynamics were split into slow/fast submodels.  A slow 

controller was used to handle the rigid joint positions while a fast controller was used for 

vibration suppression.  The rigid control gain matrices were carefully chosen to keep time 

scale separation between the controller and the flexible modes of vibration.  In this case, 

the rigid controller was critically damped and the position controller chosen to be 

approximately four times slower than the fundamental frequency of the flexible 

manipulator.  The fast controller was based on strain rate feedback of the measured 

vibration.  It was concluded that damping control was best because it is effective and 

easier to implement than a full state feedback law.   

The scheme was experimentally verified for planar vibration on a two link flexible 

robot, RALF, with a three degree of freedom rigid robot, SAM (Small Articulated 

Manipulator) mounted on its tip.  Two links of SAM were used to damp the vibration in a 

single fixed configuration selected to provide effective inertial interaction forces.  Several 
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items were pointed out that still needed to be addressed to extend the general applicability 

of the technique.  These included limits on joint torques (actuator saturation), required 

joint travel, limits on actuator bandwidth, and time scale separation between the joint 

controller and unmodeled flexible dynamics. 

Sharf [63] recognized the interaction forces as the control variables of interest.  The 

basic idea was that, given the relationship between the rigid robot joint accelerations and 

the interaction forces, the appropriate rigid body motion could be commanded to modify 

the dynamics of the flexible robot as desired.  She showed in simulation the effectiveness 

of the method by commanding the desired interaction forces to be:   

 

( )                            (2-4)b b b IF p dM C K G G+ + = = − +x x x F x x&& & &  

 

Mb, Cb, and Kb are the macromanipulator properties, x represents the flexible robot 

generalized coordinates, and FIF are the interaction forces applied by the 

micromanipulator.  Gp and Gd are the flexible motion feedback gains.  This scheme was 

designed only to damp the macromanipulator vibration and would need to be followed by 

a joint PD controller to dissipate any remaining energy in the system and for rigid robot 

control.   

Lew and Trudnowski [39] along with Evans and Bennett [40] added a flexible motion 

compensator based on strain rate feedback of the flexible system motion in parallel with 

an existing rigid joint PD controller.  The assumption of small motion of the system 

allowed linearization about an operating point.  Since the micromanipulator moves 
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relatively slowly compared to the fundamental frequency of the macromanipulator arm, 

the flexible dynamics were assumed negligible during commanded joint motion.  The 

joint control loop was first closed and the flexible controller designed from the closed 

loop transfer function of the system.  It was shown that, as long as the flexible motion 

controller is designed to be stable, the joint controller would also be stable.  The vibration 

compensator was designed to add damping to the first mode while limiting the bandwidth 

to avoid exciting higher modes.  The resulting flexible motion compensator takes the 

form: 

1

1 2

( )                                           (2-5)
1 1f

T s kC s
T s T s

  
=   + +  

L  

where T1 and T2 are time constants used to remove steady-state offsets and decrease high 

frequency gain, respectively.  Additional lead-lag blocks were also needed for proper 

phase compensation.  This signal was then added to the joint PD controller. 

Raab and Trudnowski [58] considered an active damping technique using inertial 

torques generated by torque wheels mounted at the end of a single flexible link.  They 

studied the flexible mode suppression only.  They were able to demonstrate two degrees 

of freedom of vibration damping under varying payload masses.  The vibration was 

sensed using strain gage pairs near the hub of the link.  The resulting flexible motion 

compensator took the form: 

( )                                                       (2-6)f
KsC s

s p
=

+
 



 

 32

where p was chosen to provide optimum phase compensation at the mid-loading point.  

Both of these techniques showed promising results for vibration control in two degrees of 

freedom under certain conditions. 

Cannon [15] furthered the concept of inertial damping to include an inverse dynamics 

model, helping reduce the variation in performance throughout micromanipulator�s 

workspace.  He developed and demonstrated the effectiveness of the combined position 

and vibration controller in one degree of freedom on a flexible link with a single link 

rigid robot mounted to its tip to provide the vibration damping.  The rigid position control 

scheme was chosen with stiff PD gains so the closed loop natural frequency of the system 

was approximately ten times the frequency of vibration to be controlled.  Acceleration 

measured at the tip of the flexible link was used for feedback of the base vibration.  In 

this case, the resulting vibration controller took the form: 

                                       (2-7)
.296 2.6378sinf

Kxτ
θ

=
− +

&&  

where x&&represents the measured base vibration in a single degree of freedom, θ is the 

position of the single flexible link rigid robot, and the denominator represents the rigid 

robot dynamics.  This control torque is then added to the total PD joint control torque. 

Cannon noted three disadvantages of using this method alone: it does not reduce the 

maximum amplitude of the vibration or the control effort needed, and can increase the 

settling time of the joint angle response.  He also noted decreased improvement in 

damping as the joint PD gains are increased.  He also combined the inertial damping 

method with command shaping techniques to show that the combination could provide 
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both vibration damping and amplitude reduction.  The conclusion was that the use of the 

inertial damping technique does not preclude the use of another control technique if an 

additional performance measure, such as vibration amplitude, is a concern.  These 

techniques were also later applied to a macro/micromanipulator at Pacific Northwest 

Laboratory [16] and showed similar improvements in performance. 

Loper and Book [12,42] extended the inertial damping scheme to two degrees of 

freedom of vibration.  They used the same control technique as Cannon except 

accelerations were measured in two directions and two links of a three degree of freedom 

robot were used.  The controller took the form of equation 2-7, except accelerations in 

two directions were used and the rigid robot dynamics were modeled using two links of 

the robot.  This technique was shown experimentally to be effective for planar vibration, 

again under certain conditions.  

Lew and Moon [35-38] have recently considered the more general case of a robot 

attached to a passive compliant base, but only allow three degrees of freedom of base 

translation.  The scheme compensates for base vibration while following a desired 

position.  Real-time estimates of the nonlinear rigid body dynamics are computed from 

joint accelerations calculated from measured optical encoder position data.  The coupled 

rigid body equation of motion (last row of equation 2-3) can be written as: 

 

( ) ( , , , )                                             (2-8)B Nτ + =θ θ θ θ q q τ&& & &  
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Again, instead of the notation used in his paper, notation used here is consistent with the 

notation introduced in equations 2-1 and 2-2.  N represents the rigid robot nonlinear, 

gravitational, and coupling terms.  The new rigid robot command torque becomes: 

 

� ( )                                                     (2-9)p B uτ= − +τ τ θ θ&&  

where  ττττp represents the previously commanded joint torques, �Bτ  is the estimated rigid 

robot inertia matrix, and u is the new rigid robot control input.  Using Equation 2-9 in 2-8 

and τp to estimate the nonlinear terms, the new equations of motion (equation 2-3 

rearranged) become: 

 

/ ( , ) ( , ) 0( , , , ) 0
(2-10)

          0                    ( ) 0 0              0
f fb b r br bb f brM M M KC C

B uτ
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+ + =          

            

x xq θ q θ x q q θ θ
θ θθ

&&& &&

&&
 

 

A two-time scale controller is then applied to the partially decoupled models with a fast 

controller for rigid link position and a slow controller for the vibration controller.  The 

new rigid robot control input, u, is commanded so the joint accelerations are proportional 

to the flexible base velocity and damping is added to the system.  Note to find the 

required joint control input, u, according to equation 2-9, requires the joint accelerations, 

which may be noisy and difficult to acquire real-time if only joint position measurements 

are available.   

Of course, another area that is only briefly mentioned here is hardware modifications 

such as smart structures or passive damping, which may be the only solution to certain 
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problems.  One example may be if the controlled motion is fully prescribed and no 

deviation is allowed for path modifications or to damp the vibration.  Another example 

would be if the vibration is not controllable at the point of interface with the rigid robot 

or if the vibration is not observable (the micromanipulator or sensors can only be placed 

at a node point).  Other cases could occur when the vibration controller is designed based 

on a reduced order model and fails to compensate for excitation of higher modes in the 

system.  In these cases, another option may be to introduce a dissipation mechanism to 

enhance damping rather than modify the control loop [9,10]. 

 
 

2.6 Limitations of Previous Research 

Control of macro/micromanipulators has been investigated using many different 

techniques.  As noted previously, inertial damping schemes using the micromanipulator 

to damp the vibration is an attractive compromise between control system complexity and 

system performance.  These schemes have been developed and demonstrated for a very 

specialized class of systems in unique configurations.  Some of the limitations of the 

research performed so far in this area are: 

1.  Full macromanipulator flexibility (translational and rotational) has not been 

considered.  Lew and Moon [35-38] have taken the more general approach of considering 

the macromanipulator as a compliant base, but limit the motion to only translational 

motion, which greatly simplifies the problem.  The space robotics work by Yoshida et al  

[92,93] considers the case of a robot mounted on a floating base and has lent some 

valuable theoretical work to this area, but detailed work is yet to be seen. 
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2.  The variation in performance throughout the workspace has not been fully 

addressed.  In particular, there are locations in the workspace where the ability of the 

manipulator to generate effective interaction forces and torques is diminished.  There has 

been some work in space robotics by Torres et al [77,78] and Vliet [80] that begins to 

address this issue.  A rigorous investigation of these singularities, similar to the work 

done by Papadopoulos and Dubowsky [56] for space dynamic singularities, is lacking.  In 

addition, there has not been a method proposed to address how to use the variation in 

performance to improve the effectiveness of the damping scheme. 

3.  Most of the above schemes have assumed ideal system modeling for development 

of the vibration control scheme.  Lew and Moon [35-38] looked at estimating nonlinear 

and coupling effects but practical implementation of this method could become 

challenging.  There still needs to be a detailed investigation of the coupled system model 

as well as an evaluation of the robustness of the control scheme to modeling errors. 

4.  Few hardware demonstrations have been performed on realistic 

macro/micromanipulators.  Those that have been were on robots in specific 

configurations and with only one or two vibrational degrees of freedom.  In addition, the 

only two degree of freedom demonstrations have been on robots that have naturally 

decoupled inertial damping performance.  The effects of (1-3) may become even more 

important with additional degrees of freedom. 

5.  Methods to maximize the amount of damping provided by the vibration controller 

have not been addressed.  In addition, practical limitations such as actuator saturation and 

limits on joint travel have not been addressed.  In fact, very little guidance is available on 
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choosing the vibration control gains or establishing limits on gains that consider these 

factors.  

6.  The impact of the vibration damping controller on the position controller has not 

been systematically analyzed.  Some researchers have chosen to consider the vibration 

problem separately [12,15,63,81,93] while others have carefully chosen the position 

control and vibration control loops to have time scale separation [11,33,35].   

Of course, there is plenty of room for additional work in this area.  This dissertation 

seeks to address some of the major issues remaining in the field.  In particular, this 

research includes: 

1.  Consideration of the multi-degree of freedom (DOF) macro/micromanipulator 

control problem by studying the analogous problem of a rigid robot mounted on a flexible 

base. 

2.  Investigation of the variation in performance throughout the workspace and 

inertial singularities, or locations in the workspace where the rigid robot loses its ability 

to create effective interactions in one or more degrees of freedom. 

3.  Development of a control scheme that provides active base vibration damping in 

parallel with position control and establishment of appropriate vibration control gain 

limits. 

4.  Simulation and experimental work on a realistic multi-degree of freedom 

macro/micromanipulator. 
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CHAPTER III 
 

 

FLEXIBLE BASE MANIPULATOR 
MODELING 

 
 
 

3.1 Introduction 
 

This chapter describes modeling of a rigid robot mounted on a flexible base.  The 

flexible base represents a multi-link macromanipulator with locked joints.  The rigid 

robot will provide the fine-tuned end point position control.  In this research, it is also 

used to damp vibration in the flexible base.  Thus, it is especially important to 

characterize the dynamic interactions between the macro and micromanipulator and in 

order to do this the system needs to be modeled. 

First, a recursive Lagrangian approach is described which is used to model the 

macromanipulator.  This approach is commonly used in flexible robot modeling and 

hence is only briefly reviewed here.  Next, the micromanipulator model is developed 

using a recursive Newton-Euler algorithm.  The important dynamic effects that need to be 

characterized are the required joint torques to operate the robot and the interaction forces 

and torques acting at the base of the robot.  The joint torque equations are the same form 

as those for a fixed base rigid robot with additional coupling terms due to the base 

motion.  The interaction forces and torques are explicitly solved for and are the subject of 
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further investigation in Chapter 4.  Chapter 5 then investigates how to control these 

interactions to damp the base vibration.  

 

3.2 Flexible Base Model 
 

The flexible base represents a multi-link flexible manipulator with locked joints.  The 

method chosen here is a recursive Lagrangian formulation using a finite number of 

assumed modes, which is applicable to an n-DOF flexible link manipulator.  The 

advantage of this method is its ability to include flexible link deformation.  This method 

is well documented and more detailed descriptions may be found in the paper by Book 

[8] and others who have used this method to model flexible manipulators [15,32,34,42, 

52,53,62,72].  However, other methods may be used provided they yield inertia and 

stiffness properties and adequately capture the significant dynamics of the 

macromanipulator.  Modal damping estimates are also often added and could be based on 

experimental results or estimated from material properties.  

The key difference between a flexible and rigid robot is its continuous nature.  Both 

rigid joint motion and elastic deflections govern the motion of a flexible robot, so it 

theoretically has an infinite number of degrees of freedom.  However, it is necessary to 

develop a more manageable model that approximates the system, yet adequately captures 

the significant dynamics.  The approach described here begins with assuming an 

appropriate number of modes to model the flexibility in each link for each degree of 

freedom.  The position of an arbitrary point on each link is composed of summations of 

the assumed mode shapes multiplied by the generalized coordinates.  These are used to 
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form the kinetic and potential energy of the system and with Lagrange�s equations yield 

the equations of motion of the system.  It is assumed for this work the resulting 

macromanipulator model can be linearized about an operating point, i.e. at a fixed joint 

configuration and neglecting the flexible generalized coordinates in the inertia, stiffness, 

and damping matrices.  It is further assumed the flex model is developed referenced to an 

inertial coordinate frame coincident with its last link, or at the base of the 

micromanipulator.  The resulting matrices, although constant at a given locked joint 

configuration, will generally be fully coupled and the generalized coordinates will only 

include the flexible states.  

It is assumed each link could have two degrees of freedom of transverse vibration 

plus torsion about the z-axis (Figure 3-1) and that axial vibration is negligible.  Thus, 

there will be a total of 
3

1 1

n

i k
i k

m
= =
∑ ∑ equations of motion and generalized coordinates, 

where n is the number of macromanipulator links, k represents vibration in the x, y, or θz 

direction, and mik is the number of assumed modes for the kth direction of vibration of the 

ith link. 

 

3.2.1 Assumed Modes 
 

The first task is to assume an appropriate set of modes for each degree of freedom.  

The mode shapes could be based on many methods, such as Ritz series, finite element 

models, or analytical results for continuous systems [24].  The chosen set of modes only 

needs  to  be  linearly independent and satisfy the system geometric  boundary  conditions 
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Figure 3-1 
Flexible Link Model Notation 

 

[13].  A reasonable method of estimating assumed modes for flexible manipulators is 

based on Euler-Bernoulli, or classical beam theory.  In order for this to apply, the 

centroids of each link must lie along the z-axis in the undeformed state.  In addition, the 

cross-sectional dimensions must be small relative to the length of the link and the cross 

sectional shape should vary little along the z direction [24].  These are often reasonable 

assumptions for a macromanipulator, which is characterized by its long, lightweight 

links.  Transverse and torsional vibration mode shapes for flexible beams subject to 

common boundary conditions may be found in many references, including Ginsberg [24], 

Meirovitch [49], Rao [59], and Weaver, Timoshenko, and Young [83].    
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The governing differential equation of motion for transverse vibration of a uniform 

beam [83] is:  

 
4 2

4 2

( , ) ( , ) 0                           (3 -1 )u z t u z tE I A
z z

ρ∂ ∂+ =
∂ ∂  

u(z,t) describes the resulting vibration in the x direction (or v(z,t) in the y direction), as 

defined in Figure 3-1, for the ith link.  E is modulus of elasticity, ρ is mass density, A is 

the cross-sectional area and I is the moment of inertia of the link about the x or y axis (all 

assumed constant).  Using separation of variables,  

 
1

( , ) ( ) ( )                                                     (3-2)
ikm

j
j

u z t z T tφ
=

=∑  

a basis set of mode shape functions can be found of the form: 

 1 2 3 4sin( ) cos( ) sinh( ) cosh( )                          (3-3)j j j j j j j j jC z C z C z C zφ β β β β= + + +  

Cjs and βjs are determined from the eigenvalue problem appropriate for the system�s 

boundary conditions.  mik should be truncated to a reasonable number of modes to 

adequately model the flexible dynamics without unnecessarily increasing model size and 

complexity.  Some researchers have found that two or three modes suffice to represent 

flexible dynamics on relatively uncomplicated systems [13], based on the low amplitude 

of the higher frequency modes.  

Common boundary conditions used for modeling flexible manipulators are fixed/free 

or pinned-pinned, but other boundary conditions may be more applicable depending on 

the specific application.  For example, fixed/free boundary conditions are: 
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        (0) 0  (no motion at attach point)

(0)
    0  (zero velocity at attach point)

(0)
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=

=                                        (3-4)

 

Using these boundary conditions in equation 3-3 results in a set of 4x4 equations that 

yield the following eigenfunctions, or assumed modes: 
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sin( ) sinh( ) cos( ) cosh( )

sin( ) sinh( )
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φ

 +  = − + −  +  
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The first four natural frequencies for transverse vibration of a beam with fixed-free 

boundary conditions are [83]: 

 

1

2

3

4

1.875104
4.694091
7.854757
10.995541                                                        (3-6)

L
L
L
L

β
β
β
β

=
=
=
=

 

The other issue that could be important for flexible manipulators is torsional beam 

vibration.  Assuming a uniform shaft with uniform cross section, the free vibration is 

governed by [49]: 

 
2 2

2 2

( , ) ( , )                                     (3 -7 )z zG z t z t
z t

θ θ
ρ
∂ ∂=

∂ ∂  

where G is the shear modulus of elasticity (assumed constant) and θz describes the 

rotation of the flexible link about the z-axis.  Again, separation of variables allows 

solving for the mode shapes, which take the form: 
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( ) co s sin

                                                                          (3 -8 )

j j
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z z
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ω ω
χ

ρ

= +

=
 

The frequencies again depend on the boundary conditions and for fixed/free boundary 

conditions, the mode shapes take the form:  

 
( 2 1)( ) sin ( )                                  (3 -9 )

2j j
jz C z

L
πχ +=  

The motion of the ith link can now be described as a summation of the assumed 

modes and associated generalized coordinates. 
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ui and vi are the resulting ith link deflection in the x and y directions and θzi the torsional 

rotation about the z-axis.  pij, qij, and sij are the time-varying amplitudes of mode j of link 

i in the x, y, and θz directions.  

 

3.2.2 Kinetic and Potential Energy 
 

Next Lagrange�s equations will be used to extract the inertia and stiffness properties 

of the macromanipulator.  First, kinetic and potential energy expressions need to be 

formed for each flexible link.  The kinetic energy terms represent distributed translational 

and rotational energy, while the potential energy terms represent elastic bending effects 

and gravity.  
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First, an arbitrary position on the macromanipulator needs to be described relative to 

the fixed inertial coordinate system xi-1, yi-1, zi-1 in Figure 3-1.  The coordinate 

transformation between links involves both the rigid joint transformations (Ai) as well as 

link deflection transformations (Ei).  Book [8] described a practical means of doing this 

by using 4x4 homogeneous transformation matrices to describe the position and 

orientation of one coordinate frame with respect to another.   

Using the notation introduced in his paper and referenced to the fixed inertial 

coordinates at the base of the macromanipulator, the position of a point on link i can be 

written as: 

ipoint referenced to fixed frame
1

point referenced to link i frame                                           (3-11)

1

i
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ui and vi are as defined in equation 3-10 and zi is the distance along link i.  The 

transformation Wi can be split into rigid and flexible components, as defined in Figure 3-

1, or: 

 1 1                                                                         (3-12)i i i iW W E A− −=  

For this research, Ai is assumed fixed at a specific macromanipulator joint configuration.  

Ei, however, must include both link deflections as well as rotations.  The rotation that 

occurs between i and i-1 is due to the small rotations at the tip caused by the transverse 

vibration as well as the torsional vibration.    
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Assuming small rotation angles, the direction cosine matrix simplifies and the 

complete link transformation matrix can be written as:   

 

  0        1   0   0   0
0   1   0   0    0   

                                 (3-13)
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where Li is the length of link i.  The assumption of small rotations gives: 
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However, if the macromanipulator has multiple links, it will be more useful to write 

the position vector referenced to a fixed coordinate system coincident with the last link of 

the macromanipulator (xn, yn, zn) in its equilibrium position (E=I).  Thus, the position 

vector can be found from: 

 1                                                            (3-15)
1

ii
i i i iA W−

 
= =  

 

r
h h  

θθθθ is found the same way except using the rotational terms only in Ei (3x3s).  The potential 

and kinetic energy of the system can now be written as:   
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where: 

x y

  mass density
cross-sectional area

E modulus of elasticity
I , I area moment of inertia of the cross sectional area computed about the x or y axis

G modulus of rigidity
J polar area moment of the cros

A
ρ =
=
=

=

=
= s sectional area computed about the neutral axis

 

One of the benefits of this method is that as much detail can be included in the equations 

of motion as desired.  Here many of the assumptions that have been used and justified by 

other researchers have been used to pare the equations of motion down to the most 

significant contributions [8,24,34,46,52,72,83].  

Now Lagrange's equations can be used to derive the equations of motion. 

                                                      (3-17)i
i i i

d T T V
dt q q q
 ∂ ∂ ∂− + = ∂ ∂ ∂ 

Q
&

 

Qi are the nonconservative generalized forces applied to the macromanipulator 

corresponding to the generalized coordinate qi.  In this research, these are the interaction 

forces and torques created by the micromanipulator.  The generalized forces are 

determined from the virtual work done by the micromanipulator, or  

                                                             (3-18)IF IFWork rδ δ δθ= +F τ  

The infinitesimal displacements and rotations at the tip of the macromanipulator are 

given by equation 3-15 evaluated at zi=Li.  The partial derivatives of the resulting 

infinitesimal displacements and rotations are taken with respect to each generalized 

coordinate to find the generalized forces.   
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The final equations of motion take the form: 

 ( ) ( ) ( )                                                    (3-19)M C K+ + =q q q q q q Q% && % & %  

where it is assumed the mass, stiffness, and damping matrices can be linearized about a 

nominal operating point.  Since the joints of the macromanipulator are locked, q 

represents the flexible states and consists of a finite number of modes of interest.  The 

mass, stiffness, and damping matrices can be linearized and assumed approximately 

constant about an operating point, q . 

 
 

3.3 Flexible Base Rigid Manipulator Model 
 

In order to better understand and analyze the coupling effects between a rigid 

manipulator and flexible macromanipulator, the problem was generalized into a rigid 

manipulator mounted on a flexible base (Figure 3-2).  The base represents inertia, 

stiffness, and damping properties of a distributed parameter system, modeled as discussed 

in section 3.2.  There are two goals of this portion of the work.  The first goal is to 

develop the equations of motion in order to model and simulate the interactions between 

the robot and its flexible base.  The second is to investigate these effects in order to 

determine which are most significant.  The analysis of the interaction forces and torques 

is discussed in Chapter 4.  

A recursive Newton-Euler method, commonly used to develop joint torque equations 

for rigid robots [18,48,61], was used to find the interaction forces and torques.  Other 

methods are also valid if they allow solving for the interaction forces and torques that act 

at the base of the micromanipulator.  It is assumed that the origin of an inertial coordinate 
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Figure 3-2 
Flexible Base Rigid Robot 

 

 

system is located at the base of the rigid robot, or at the tip of the undeformed 

macromanipulator.  The  elastic  states of the macromanipulator affect the rigid  robot  by  

moving its base in Cartesian space (Figure 3-2).  In developing the equations of motion, 

these become boundary conditions on the rotational velocities and translational and 

rotational accelerations of the first link and are then propagated forward to the other 

links.  Then, a backward recursion is used to solve for the forces and torques acting on 

each link, with the final set giving the forces and torques acting between the rigid robot 

and the macromanipulator. 

The assumptions made in the development of these ideal equations of motion are: 

1) No contact forces or moments are applied to the tip of the micromanipulator 

2) Off-diagonal products of inertia are negligible 

3) Position vectors for off-axis distances to link centers of gravity (CGs) are negligible 

Distributed 
Macromanipulator 

Properties 
, ,y yyθ θ&& &&&

, ,x xxθ θ&& &&&
, ,z zzθ θ&& &&&

1θ

2θ
3θ
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4) Friction effects and other nonlinearities are not modeled  

5) Rotor inertia effects are not included.   

If actuator dynamics dominate the rigid robot performance, an alternate form of the rigid 

robot model may apply.  However, the interaction forces and torques described by this 

model will still be valid.  

First, consider for the moment a single link rigid robot mounted to a flexible base.  

The base is free to move in any direction.  The arm rotates about the x-axis as defined in 

Figure 3-3 (out of the page).   

 

 

 

 

 

 
 

Figure 3-3 
Flexible Base Single Link Rigid Robot 

 

The acceleration of the center of gravity of the link is given by: 
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where: 
 
aG = acceleration of the center of gravity of the rigid link 
a0 = acceleration of the base 
g = gravitational constant 
ωωωω = angular velocity of the link 
αααα = angular acceleration of the link 
rCG = position vector from the base to the center of gravity of the link 
 

Now the interaction forces and torques at the base of the link can be solved for: 

 
( )

                           ( 3 -2 1 )

I F G

x x x

IF C G I F y y y

z z z

m

I

I

I

θ θ
θ

θ

=

 +
 

= − × +  
 
  

F a

τ r F

&& &&

&&

&&

 

where m is the mass of the robot arm and Ixx, Iyy, and Izz are moments of inertia of the link 

about the respective axes.  Just for this one link case, the interaction forces take the form: 
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   
   
   
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Here the abbreviated form for the trigonometric functions, cθ and sθ, are used to 

represent cosθ and sinθ, as will be the case for the remainder of this document.  Using the 

notation for the macromanipulator in the previous section and equations 3-10 and 3-14, 

the displacements and rotations at the tip of the macromanipulator can be written in terms 
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of the generalized coordinates, q.  Thus, these equations can be written in more compact 

form as: 

 

1 22 2

0 0 0 0 1 00 2

( ) ( ) ( ) ( ) ( , ) ( )
          (3-23)

( ) ( ) ( ) ( ) ( )( , )
f f f fc fc fIF
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= + + + +          

            

q
q q

&&&
& & &

&& &  

The goal of the control scheme is to control the interaction forces and torques via the 

rigid robot to damp vibration in the macromanipulator.  From the above reduced 

equations of motion, it is apparent the effects that directly influence the interaction forces 

and torques are given by: 

2

0 0

( ) ( )
                                                      (3-24)

( ) ( )
f fIF

IF

B NF
B Nτ τ

θ θ
θ θ

τ θ θ
    

= +    
     

&& &  

The generic algorithm is similar to the well-documented Newton-Euler method for 

deriving the equations of motion for a rigid robot, except in this case the interaction 

forces and torques are required in addition to the joint torque equations.  The notation 

used below is consistent with that found in Sciavicco and Siciliano [61] where the more 

efficient method of referring the vectors to the current frame associated with link i is 

used.  The algorithm uses forward recursions, which propagate the velocities and 

accelerations of each link forward to the next link.  This is followed by backward 

recursions, which solve for the forces and torques acting on each link starting with the 

force and moment applied to the end effector (assumed zero for this work).   
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Using parameters as defined in Figure 3-4, the forward recursions take the form: 
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Figure 3-4 
Notation Used for Recursive Newton-Euler Algorithm 
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The backward recursions take the form:  

1
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eraction torque between links i and i-1
generalized joint actuation torque for link i                                                    (3-26)iτ =

 

Boundary conditions of the tip velocities and accelerations of the macromanipulator are 

applied to the first link and propagated through the forward recursions.  It is assumed that 

the micromanipulator is not in contact with any object so the forces and torques applied 

to the tip of its last link are zero.  

The equations of motion take the general form: 

 0 0 0 0

( ) ( , ) ( )  ( , , , )         

( ) ( , ) ( )  ( , , , )      

 ( ) ( , ) ( )  ( , , , )                                  

IF f f i j f fc

IF i j c

i j c

B N C N

B N C N

B N C N
τ τ τ τ

τ τ τ τ

= + + +

= + + +

= + + +

F θ θ θ θθ θ q q q θ θ

τ θ θ θ θ θ θ q q q θ θ

τ θ θ θ θ θ θ q q q θ θ

&& & & &&& &

&& & & &&& &

&& & & &&& &                  (3-27)
 

θθθθ represents the rigid robot joint variables and q represents the flexible base generalized 

coordinates.  Bf, Bτ0, Cf, and Cτ0 represent inertia effects of the micro and macro 

manipulators, respectively.  Bf and Bτ0 are particularly important because they represent 

the controllable rigid robot inertia effects.  These matrices are, in general, not symmetric, 

or positive definite (but the inertia matrix for the complete coupled system is, of course).  

The remaining terms in 3-27 represent nonlinear and gravitational effects.  The third 

equation is the typical joint torque equation with extra coupling terms.  Often actuator 

dynamics or other effects dominate the robot performance, so this equation could take 
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other forms.  However, for this work it is assumed the relationship between the joint 

actuation torques and joint positions is known and controllable.   

These equations were written in symbolic form in Matlab [21].  The 

macromanipulator tip angular velocities, angular accelerations, and translational 

accelerations are the boundary conditions and are given by: 

0 0 0
0 0 0, ,                                          (3-28)

x x

y y

z z

x
p y

g z

ω ω
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ω ω

     
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     +    

& &&

& & && &&

&&&

 

These were used in equation 3-25 and propagated forward to each link, and then 

equations 3-26 were used to find the interaction forces and torques and joint actuation 

torques.  These equations were developed for anthropomorphic, spherical, wrist, and 

anthropomorphic/wrist robot configurations and many are included in Appendix A.  The 

ability of this method to predict the interaction forces and torques was verified 

experimentally with a six-degree-of freedom force/torque sensor mounted at the base of a 

three DOF anthropomorphic rigid robot.  

 

3.4 Coupled Macro/Micromanipulator Model 
 

The micromanipulator is considered in this work to apply the interaction forces and 

torques to the flexible base.  The flexible manipulator, given by equation 3-19, is now 

written with translational and rotational effects considered separately.  The generalized 

forces applied by the micromanipulator are given by 3-18.  Here, for the sake of 

generality, the interactions are assumed applied directly to the flexible base.  In this case, 

the flexible manipulator equations of motion become: 



 

 56

0 0  0
                          (3-29)
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where xf represents the coordinates governing the translational motion of the flexible base 

and θθθθf represents the coordinates governing the rotational motion of the base.  The 

interactions commanded by the rigid robot motion are given by equations 3-27.   

These are rewritten here to explicitly to identify a few key terms: 
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Substituting 3-30 into 3-29 and rearranging yields the coupled equations of motion: 
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The goal of the next chapter is to investigate these equations of motion more 

thoroughly and, in particular, study the interactions directly controllable by the rigid 

robot.  
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CHAPTER IV 
 
 

INTERACTION FORCES AND TORQUES AND 
INERTIAL SINGULARITIES 

 
 
 

4.1 Introduction 
 

This chapter addresses the interaction forces and torques acting between the rigid 

robot and its flexible base.  Recall these are given by: 

0 0 0 0

( ) ( , ) ( )  ( , , , )         

( ) ( , ) ( )  ( , , , )                        (4-1)
IF f f i j f fc

IF i j c

B N C N

B N C Nτ τ τ τ

= + + +

= + + +

F θ θ θ θ θ θ q q q θ θ

τ θ θ θ θ θ θ q q q θ θ

&& & & &&& &

&& & & &&& &
 

The focus of this chapter is the directly controllable rigid robot effects, or those terms that 

are only functions of θθθθ (the first two terms in each equation).  For completeness, the more 

detailed equations of motion for each robot may be found in Appendix A 

(anthropomorphic, spherical, wrist, and anthropomorphic/wrist robots).  The notation and 

coordinate systems used are shown in Figures 4-1 through 4-4.  The robot configurations 

are defined consistent with those described in Sciavicco and Siciliano [61] for 

anthropomorphic and spherical arm robots and spherical wrist robots, with one exception 

noted in Figure 4-1.  In addition, terminology consistent with McGill/King [47] will be 

used where centripetal refers to accelerations and centrifugal refers to forces. 

First, the inertia forces and torques are discussed, or those generated by accelerating 

the links of the rigid robot.  An important part of this work involved investigating 
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�inertial singularities,� or regions in the workspace where the robot loses its ability to 

create inertia interactions in one or more degrees of freedom.  These are important 

because the control scheme inverts the inertia matrix, which presents a problem when 

these matrices become singular.  However, these singularities also represent physical 

limitations, so it is important to understand where and why they occur and, if possible, 

devise ways of avoiding operation in or near these regions.  

Next, the nonlinear centrifugal and coriolis forces and torques are discussed.  There 

are regions in the workspace where these can become large during multi-DOF actuation 

of the joints.  These effects are driven by the joint space configuration of the robot and 

the joint velocities.  In most configurations, the ratio of inertia to nonlinear effects is 

large.  However, in some configurations the nonlinear effects can interfere with the 

inertia effects.  If the amplitude of joint motion is limited appropriately, this ratio can be 

improved.  The remainder of the interaction terms involve combined rigid robot and 

flexible base coordinates and are not discussed further here other than to note they are 

important for accurate modeling.  Finally, the interaction forces and torques were 

developed using the Newton-Euler method described in chapter 3.  However, a more 

efficient approach to find the inertia and nonlinear rigid force effects is presented here.   

The work presented in this chapter leads to two important conclusions, which will be 

used in the development of the control scheme.  First, since the inertia effects are 

functions of the joint configuration, this variation in performance may be used to ensure 

the robot operates in joint space configurations better suited for inertial damping.  This is 

possible because there are normally multiple inverse kinematic solutions corresponding 
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to a given end point position (provided the robot is not operating at a kinematic 

singularity).  A performance measure to predict the rigid robot's ability to create effective 

multi-DOF inertia interactions is introduced here.  It can be used to choose better inverse 

kinematic solutions for inertial damping and will become an important part of the 

performance index discussed in Chapter 5.  Second, if the joint amplitudes are limited 

appropriately, the ratio of inertia/nonlinear effects can be improved.  The amplitude of 

motion can be controlled by establishing proper limits on the vibration control feedback 

gains.  The control scheme and feedback gains will be discussed in Chapter 5.  The 

adequacy of these models in predicting the interactions was tested on a three DOF 

anthropomorphic robot with a six-axis ATI force/torque sensor mounted to its base.  

These results will be presented in Chapter 7.  
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Figure 4-1 
3 DOF Anthropomorphic Robot 
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Figure 4-2 
3 DOF Spherical Robot 

 

Figure 4-3 
3 DOF Wrist Robot
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Figure 4-4 

6 DOF Anthropomorphic Robot with Wrist 
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4.2 Inertia Forces and Torques and Inertial Singularities 

The inertia forces and torques are functions of the joint configuration of the robot and 

joint accelerations.  The ability of three typical robots to generate interactions is 

examined in three degrees of freedom since this is easily visualized.  Using the notation 

defined in equation 4-1, Bf and Bτ0 are inertia-like matrices but they are, in general, not 

square, symmetric, or positive definite (the inertia matrix for the coupled system, Bτ from 

equation 3-27, is).  These matrices are particularly important for two reasons.  First, the 

rigid robot needs to have enough inertia to apply effective interaction forces and torques 

to the macromanipulator.  The ratio of the rigid inertia to flexible inertia effects becomes 

an important part of the performance index.  Second, there are locations in the workspace 

where these matrices become singular, which presents a problem since they are inverted 

in the control scheme.  However, the more important consideration is that these �inertial 

singularities� represent physical limitations in that an inertia force or torque cannot be 

created in one or more degrees of freedom.   

 

4.2.1 Performance Measure for Inertial Damping 

The following performance measure provides a quick and accurate measure of the 

ability of the rigid robot in generating effective interaction forces and torques and 

assesses its variation throughout the workspace: 

0 0( ) ( ) , ( ) ( )                                            (4-2)T T
f fB B B Bτ τθ θ θ θ  
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Alternately the combined ability of the robot to generate interaction forces and torques 

may be evaluated by assessing: 

0

( ) ( )

( )
                                                   (4-3)

( )

T

f

B B

B
B

Bτ

 
=  
 

θ θ

θ
θ

 

First, it is important to note a few points about these matrices.  They are real but not, 

in general, square, or symmetric and thus will not have real eigenvalues [73].  However, 

BTB will always be symmetric and its determinant will be positive.  Singular value 

decomposition is a related technique noted for its usefulness in determining how near a 

matrix comes to becoming singular.  It has also been noted that the use of only the 

minimum and maximum singular values is overconservative [23].  Thus, the determinant 

of BTB, which is the product of the singular values, was chosen for the performance 

measure.  In addition, although this dissertation does not specifically address cases of 

underactuation or redundancy, the proposed measure may be extended to those cases 

since there is no requirement that the matrices be square.  Finally, the determinant of a 

matrix can much more easily be evaluated than eigenvalues or singular values, which is 

particularly important if the performance measure will be used in real-time.  This 

measure not only provides an indication of how these effects vary throughout the 

workspace, but also shows regions where full multi-DOF inertial damping capability is 

not possible.  The goal here is to use this performance measure to choose robot joint 

space locations where the inertia effects are large, whenever possible. 
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4.2.2 Interaction Force Performance 

Consider the three degree of freedom anthropomorphic robot shown in Figure 4-1.  

Note this is a special case where three joints create interactions in three degrees of 

freedom.  Hence the inertia force matrix is square and given by: 

1 2 23 1 2 23 1 23

1 2 23 1 2 23 1 23

2 23 23

( )    ( )   
  ( )    ( )                     (4-4)
         0                                    

f

s Ac Bc c As Bs Bc s
B c Ac Bc s As Bs Bs s

Ac Bc Bc

− + − + − 
 = + − + − 
 + 

 

where: 
 

A=m2r2+m3a2 
B=m3r3 
mi=mass of link i 
ai=length of link i 
ri=distance to the center of gravity (CG) of link i 
 

The determinant allows an evaluation of the singularity points and is given by: 

3 2 23( )                                          (4-5)fB ABs Ac Bc= − +  

The matrix becomes singular whenever s3=0 or Ac2+Bc23=0. 

The variation in force performance, as quantified by the performance measure in 

equation 4-2, is shown in Figure 4-5 over a reduced range of joint motion in order to help 

clarify the presentation.  Cases 1 and 2 refer to specific regions in the workspace that will 

be referred to later.   
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Figure 4-5 

Force Performance � 3 DOF Anthropomorphic Robot 
 

The inertia matrix for the spherical robot and its determinant are given by:  

1 1 2 1 2 3 1 2

1 1 2 1 2 3 1 2

2 3 2

3 2
3 2 3

      
      

           0               c  

                                                                          (4-

s s s

f s s s

s

f

Ac B s s B c c m c s
B A s B c s B s c m s s

B s m

B m s r

− − 
 = − + 
 − 

=− 6)
 

 
where: 
 
As=m2r2+m3d2 
Bs=m3r3 (note r3 is not constant) 
di=length of link i 
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Its variation in performance is shown in Figure 4-6.   

 

 
Figure 4-6 

Force Performance � 3 DOF Spherical Robot 
 
 
 
 

The equivalent matrix for the three DOF wrist is given by: 

4 5 4 5

4 5 4 5

5

 0
           0                                        (4-7)
      0         0

w w

f w w

w

A s s A c c
B A c s A s c

A s

− 
 =  
 − 

 

where: 
 
Aw=m5r5+(d5+r6)m6 
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Its variation in performance is shown in Figure 4-7. 
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Figure 4-7 

Force Performance � 3 DOF Wrist Robot 
 

The regions with very low values represent locations in the workspace where the 

robot cannot produce inertia forces in one or more degrees of freedom.  These will be 

termed �inertial singularities.�  These singularities consist of some of the kinematic 

singularities plus additional dynamically singular configurations.  The two general cases 

are annotated on Figures 4-5 through 4-7.  The singularities are driven by the columns of 

Bf when the matrix contains: 

1) Linearly dependent columns, which indicate that the inertia forces created by two or 

more links are parallel.  For example, this singularity occurs for the anthropomorphic 

robot when the last two links are aligned.  This also corresponds to a kinematic 

singularity, when the velocities generated by the two links are parallel.  For the 
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spherical robot, this occurs when joint 2 is at 0° or 180°, when both links 1 and 2 

create velocities (and inertia forces) in the horizontal direction.  All of the three DOF 

spherical robot singularities are the same as the kinematic singularities. 

2) A column of zeros, which indicates a location in the workspace where the motion of a 

joint cannot create any inertia interaction forces.  This singularity occurs when the 

CG of the robot is aligned along an axis of rotation.  For the anthropomorphic robot, 

this occurs when the system CG is aligned along the z-axis, so link 1 can produce no 

interaction inertia forces.  In the spherical robot, this will occur if link 3 is aligned 

along the axis of joint 2, which renders a middle column of zeros.  This singularity 

can be avoided by requiring some minimum length to link three.  These are, in 

general, different from the kinematic singularities.  The inertial singularities depend 

on the location of the CG of the system.  If it is known where these occur, they can be 

avoided by not operating in those joint space configurations. 

In the case of the anthropomorphic and spherical robots, link 1 has no effect on the inertia 

force performance because it cannot affect the CG of the system.   

Given the configuration shown in Figure 4-3, the wrist is always singular in three 

degrees of freedom.  Its last link cannot create any inertia interaction forces since its axis 

of rotation is along the main link of the robot.  In addition, only the orientation of joint 5 

affects the inertia forces since it is the only joint that affects the CG of the system.  It is 

also interesting to note the wrist singularities occur when the arm is straight down or 

straight up (θ5=0° or 180°).  This is a combination of cases 1 and 2 since these are 

kinematic singularities and the CG is aligned along joint 1.  Note the extremely small 
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force magnitudes generated by the wrist, indicating its use alone would not be very 

effective at creating interactions. 

It is also worth mentioning another type of singularity, which corresponds to a row of 

zeros in the matrix or two parallel rows.  This singularity occurs in conjunction with one 

of the other singularity configurations discussed above.  For example, if the CG of the 

anthropomorphic robot is oriented along the axis of rotation of joint 1 (case 2), an inertia 

force cannot be produced in the out-of-plane direction.  In this case, two of the rows can 

become parallel or one can become a row of zeros, depending on θ1.  Two other types of 

row singularities can occur in conjunction with the kinematic singularity at θ3=0° (case 

1).  When joint 2 is at 90° (straight down) and joint 3 is at 0°, no inertia forces can be 

produced in the z direction and the third row becomes a row of zeros.  Finally the 

orientation at θ2=0°, θ3=0° can result in a row of zeros in either the x or y direction, 

depending on θ1.  These are easily identified using the proposed performance measure 

defined in equation 4-2 and serve to further verify the singularities are driven by the 

columns of the inertia matrices. 
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4.2.3 Interaction Torque Performance 

The interaction torque matrices are given by equations 4-8 through 4-10:  

Anthropomorphic Robot: 

0 1 2 23 3 2 2 2 3 3 2 3 23 2 2 2

0 1 2 3 23 2

0 1 2 3 23 3

0 1 2 23 3 2 2 2 3 3

(1,1) { 2 [ ( ) ] ( )( ) ( ) ( ) }
(1, 2) { (2 ) ( )}
(1,3) { ( ) }
(2,1) { 2 [ ( ) ] ( )( )

zz

B c c s c E J Ba E J s c s c B a s Dc G K s c ADc
B s B a c Ds ADs E H K
B s B a c Ds E I
B s c s c E J Ba E J s c s c B

τ

τ

τ

τ

= − + + + + + + − + − −
= + + + + +
= + + +
= − + + + + + + 2 3 23 2 2 2

0 1 2 3 23 2

0 1 2 3 23 3
2 2 2

0 2 23 3 2 2 3 2

0 0

( ) ( ) }
(2, 2) { (2 ) ( )}
(2,3) { ( ) ( )}

(3,1) 2 [ ( ) ] ( )( ) ( )
(3,2) (3,3) 0                       

zz

a s Dc G K s c ADc
B c B a c Ds ADs E H K
B c B a c Ds E I
B c c c E J Ba E J c c K G c E L
B B

τ

τ

τ

τ τ

− + − −
= − + + + + +
= − + + +

= + + − + + + − + +
= =                                                                                         (4-8)

 

where: 
 
D=d0+d1 
E=m3r3

2 

G=I2xx-I2yy 
H=I2zz+I3zz 
J=-(I3xx-I3yy) 
K=m2r2

2+m3a2
2 

L=I1yy+I2xx+I3yy 
d0=length of link 0 (inert link) 
Ijkk=moment of inertia of link j about the k axis 
 

Spherical Robot: 

0 1 2 2 1 1 2 2 1 2 1 1

0 1 1 1 2 2 1 2

0 3 1 1 2 2 1 2

0 1 2 2 1 1 2 2 1 2 1 1

0 1 1 1 2 2 1 2

(1 ,1 ) ( ) ( )
(1 , 2 ) ( ) ( )
(1 , 3 ) ( )
( 2 ,1 ) ( ) ( )
( 2 , 2 ) ( ) ( )

s s s s s

s s s

s s s s s

s s s

B H E G c c s B a c s a s c A a s
B E F s B a s c a c s
B m a s s a c c
B H E G s s c B a s s a c c A a c
B E F c B a c c a s s
B

τ

τ

τ

τ

τ

= − − + + −
= − + + −
= +
= − − + − +
= + − +

0 3 1 1 2 2 1 2

2
0 1 2

0 2 2

0 3 2 2

( 2 , 3 ) ( )

( 3 ,1 ) ( )

( 3 , 2 )
( 3 , 3 )                                                                  ( 4 -9 )

s y y s s s s s

s

m a c s a s c
B E I G K H E G c
B B a c
B m a s

τ

τ

τ

τ

= − −

= + + + + − −

= −
= −
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where:  
 
Es=m3r3

2 

Fs=I2yy+I3yy 
Gs=I2xx+I3xx 
Hs=I3zz+I2zz 
Ks=m3a2

2+m2r2
2 

 

Wrist Robot: 

{ }

{ }

0 5 4 5 4 4 6 4 6 4 5 6

0 4 4 4 5 6 4 6 4 5 6

0 6 4 5

0 5 4 5 4 4 6 4 6 4 5 6

0 4 4 4 5

(1,1) ( ) ( )
(1,2) ( ) ( )
(1,3)
(2,1) ( ) ( )
(2,2) ( )

w w w w w

w w w w w

zz

w w w w w

w w w w

B s K E L c c A d c J c s s c c c
B M E L s A d s c J c s c c c s
B I c s
B s K E L s c A d s J c c s s c c
B M E L c A d c c J

τ

τ

τ

τ

τ

= − + + + + −
= − + + − − +
=
= − + + − + −
= + + + + 6 4 6 4 5 6

0 6 4 5

2 2 2
0 5 5 6

0 5 6 6

0 6 5

( )
(2,3)

(3,1) ( )
(3,2)
(3,3)                                                                                                (4-10)

w

zz

w w w w

w

zz

c c c s c s
B I s s
B s K E L J s c
B J s s c
B I c

τ

τ

τ

τ

−
=

= − + + −
=
=

 

where: 
 
Ew=m6r6

2 

Jw=I6yy-I6xx 
Kw=m5r5

2+m6d5
2 

Lw= I5xx-I5zz+I6yy-I6zz +2m6r6d5 
Mw=I5yy+I6xx+2m6r6d5 
Nw=I4yy+I5xx+I6yy+2m6r6d5 
 

The inertia torque performance of the three DOF anthropomorphic robot can be seen 

in Figure 4-8 by evaluating the torque performance measure defined in equation 4-2.  

However, the inertia torques created by accelerating joints 2 and 3 are always parallel so 

this evaluation was made for joints 1 and 2 only (first two columns of the matrix).  This 

highlights one advantage of using this performance measure instead of the determinant of 

the matrix, because performance of the robot in reduced degrees of freedom can still be 
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evaluated.  The inertia torque performance for the spherical robot is shown in Figure 4-9 

and the wrist torque performance is shown in Figure 4-10.  

 
 

 
Figure 4-8 

Torque Performance � 2 DOF Anthropomorphic Robot 
 
 

The torque singularities are much less intuitive than the force singularities.  This is 

further complicated by the complexity of the interaction torque equations, even when 

simplified as much as possible (nor does the determinant simplify into a nice form).  

However, they still occur in the same two general cases: either when one or more 

columns becomes parallel (case 1) or one or more columns of zeros occur in the Bτ0 

matrix (case 2).  For the anthropomorphic robot, the torque singularities occur near the 
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same regions as the case 2 force singularities.  However, in this case the torques created 

by accelerating the CG of the robot are cancelled by accelerating the inertia of a link, 

which results in a column of zeros.  The spherical torque singularities occur when the 

torques created by all three links become parallel.   

 
 

 
Figure 4-9 

Torque Performance � 3 DOF Spherical Robot 
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Figure 4-10 

Torque Performance � 3 DOF Wrist Robot 
 

The wrist torque performance is again only a function of θ5 and of relatively small 

magnitude, reiterating the assertion that it is unlikely to be useful alone in creating 

effective interactions.  It also has a large region of very small torque performance from 

100°<θ5<180°.  This occurs because the last link is oriented up towards the first link, 

which reduces the effective inertia of links 1 and 3.  However, the wrist can be useful 

when added to the last link of an existing robot.  First, the full inertia matrix, B(θθθθ), 

becomes 6 x 6 and could then be directly inverted in the control scheme to provide full 

six degree of freedom inertial damping capability.  Another option is to use the additional 

inertia of the wrist to increase the damping effectiveness of the base robot.  The wrist 

could then be used to provide final positioning or to give desired orientation of the end 

effector. 
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4.2.4 Combined Performance 
 

The combined force and torque performance of the robots can be evaluated by using 

equation 4-3.  It is important to note that, even if the interaction forces or torques are 

prescribed independently, commanding one will always command the other.  Thus, it 

becomes important to be able to evaluate the combined force and torque performance of 

the robot.  The combined performance plots for the anthropomorphic and spherical robots 

are shown in Figures 4-11 and 4-12.  In these cases, the interaction inertia matrix 

becomes 6x3, but the proposed performance measure still allows evaluation of the 

combined force and torque performance.   

 

 
Figure 4-11 

Combined Force and Torque Performance � 3 DOF Anthropomorphic Robot 
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Figure 4-12 

Combined Force and Torque Performance � 3 DOF Spherical Robot 
 

For the two robot configurations shown here, the addition of the torque effects makes 

little difference in the overall performance.  As can be seen in Figure 4-11, the 

anthropomorphic robot inertial force singularities are still clearly apparent and the overall 

shape of the performance measure remains the same.  For the spherical robot, the inertia 

forces are even more dominant and the torque singularities are practically eliminated 

from the plot.  The torque effects also slightly improve the performance around the case 1 

force singularities.  The ideal situation would be to fully prescribe both forces and 

torques for six DOF base vibration damping.  However, these plots indicate that if only 
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the forces or torques are to be prescribed it is more important to consider the interaction 

forces. 

 

4.3 Nonlinear Rigid Interaction Force and Torque Effects 

This section investigates the nonlinear interaction forces and torques expecting during 

multi-degree of freedom inertial damping.  Inertial damping has been shown previously in 

limited degrees of freedom and with robots oriented in specific configurations.  The 

single link case is relatively straightforward since the acceleration of the CG of the link 

and centripetal acceleration will be perpendicular for rotational joint motion [47].  This 

will not be the case with multiple joint actuation, so it becomes more important to address 

these.   

The interaction forces and torques directly controllable by the rigid micromanipulator 

are given by: 

2
1 1 2 1

2
2 1 3 2

2
3 32 3

2
1 1 2 1

2
0 2 0 1 3 0 2

2
3 32 3

( ) ( ) ( ) ( )

( ) ( ) ( )

IF f Rf Cf f

IF R C

B N N G

B N Nτ τ τ

θ θ θ θ
θ θ θ θ
θ θθ θ

θ θ θ θ
θ θ θ θ
θ θθ θ

     
     

= + + +     
     
          
    
   

= + +   
   
      

F θ θ θ θ

τ θ θ θ

&& & & &

&& & & &

&& && &

&& & & &

&& & & &

&& && &
0 ( )                               (4-11)Gτ


 

+ 
 
  

θ

 

Here coriolis and centrifugal effects have been written separately.  Gravity effects are not 

further discussed here since they are not dynamic effects.  In addition, in Chapter 5 

rationale will be presented which allows the assumption to be made that the matrices 

governing the interactions may be linearized about an operating point.   



 

 79

The nonlinear rigid effects are functions of the manipulator position and joint 

velocities.  The anthropomorphic rigid coriolis force matrix is given by: 

1 2 23 1 23 1 23

1 2 23 1 23 1 23

23

   2 ( )         2     2
2 ( 2 )    2      2                      (4-12)

             0                           0            2  
Rf

s As Bs Bs s Bc c
N c As Bs Bc s Bs c

Bs

+ − 
 = − + − − 
 − 

 

The anthropomorphic rigid centrifugal force matrix is given by: 

1 2 23 1 2 23 1 23

1 2 23 1 2 23 1 23

2 23 23

( )     ( )     
( )     ( )                           (4-13)

               0                 ( )      
Cf

c Ac Bc c Ac Bc Bc c
N s Ac Bc s Ac Bc Bs c

As Bs Bs

− + − + − 
 = − + − + − 
 − + − 

 

First, the variation in the nonlinear effects due to joint position is investigated.  Next, the 

effect of joint amplitudes on these effects will be discussed.  

Assuming harmonic base vibration of mode i of the flexible base, the base motion and 

prescribed interaction forces and/or torques will be harmonic and take the form 

(justification for this will be shown in Chapter 5): 

sin
/ cos                                                            (4-14)

i i i

IF IF i i i i

x X t
F T K X t

ω
ω ω

=
=−  

Ki can be used to adjust the amount of damping added to the system.   From equation 4-

11, the interaction effects are controlled by joint postions, velocities, and accelerations.  

If any one of these are commmanded harmonically, the others will also be commanded 

harmonically.  

First, consider the nonlinear forces generated by the anthropomorphic robot during 

multi-degree of freedom harmonic joint motion (Figures 4-13 and 4-14).  These plots 
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were generated assuming all joints are actuating simultaneously and at constant 

amplitudes given by: 

15 ( )cos(1.4 * 2 )
180

2.3sin(1.4* 2 )
20cos(1.4 * 2 )                                                             (4-15)

t

t
t

ο
πθ π

θ π
θ π

°=

= −

= −

&

&&
 

Harmonic motion at 1.4 Hz was chosen because it is the fundamental mode of vibration 

of a long, flexible link.  This is representative of a fundamental mode of a flexible 

macromanipulator, i.e. lightly damped, low frequency harmonic vibration.  The inertia 

forces generated under these same circumstances can be seen in Figure 4-15.  Note these 

are not the same comparisons as the figures in Section 4.2.   

 

 
Figure 4-13 

Anthropomorphic Robot Coriolis Forces 
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Figure 4-14 

Anthropomorphic Robot Centrifugal Forces 
 
 

 
Figure 4-15 

Anthropomorphic Robot Inertia Forces 
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Although this initial analysis may be overconservative since it does not consider the 

effect of decaying amplitudes or phasing, it does bring to light several important 

considerations.  First, the magnitude of the inertia forces is much larger than the 

nonlinear forces.  Second, coriolis forces are largest in near-singularity regions (case 2 in 

Figure 4-5).  Thus, the coriolis forces are not a great concern because operation in these 

regions will be avoided by using the performance index.  However, the centrifugal forces 

are largest around the kinematic singularities (case 1 in Figure 4-5) and where the inertia 

forces are largest, as shown in Figure 4-15.  In fact, the centrifugal forces are maximum 

at the singularity point θ2=0°, θ3=0°.  Operation exactly at the singularity points will be 

avoided, but operation around them may be required, especially if large inertia forces are 

desired. 

Since the anthropomorphic robot is always singular in three DOF inertia torque 

performance, the spherical robot was chosen to study the nonlinear torque effects.  The 

spherical robot coriolis and centrifugal torque matrices are given by equations A-37 and 

A-38 in Appendix A.  Note the third link is prismatic, so r3 is a variable.  Figures 4-16 

and 4-17 show the variation in nonlinear torque performance throughout the joint 

workspace and Figure 4-18 shows the inertia torques.  These plots indicate that the 

coriolis torques are greatest in joint configurations where the inertia torque effects are 

largest.  The centrifugal torques are largest in regions where the inertia torques are small, 

indicating they will interfere less with the inertia torques.  Again, the magnitude of the 

inertia torques is greater than the nonlinear torques, but not to the same extent seen for 

the anthropomorphic robot forces.  Although these results are not presented here, the 
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anthropomorphic robot also has a much larger ratio of inertia/nonlinear torques than the 

spherical and wrist robots.  This occurs primarily because the last link of the spherical 

robot is prismatic and accelerating it does not provide the additional rotational inertia 

effects.  In general, for both robots the centrifugal torques become large near the inertial 

singularity torque regions, while the coriolis torques become more of a concern in regions 

where the inertia torques are large.  

 

 
Figure 4-16 

Spherical Robot Coriolis Torques 
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Figure 4-17 

Spherical Robot Centrifugal Torques 
  

 
Figure 4-18 

Spherical Robot Inertia Torques 
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From these initial studies, Matlab simulations were built for the anthropomorphic 

robot to further investigate the relative magnitudes of the force and torque effects.  These 

were simulated by commanding the joint accelerations proportional to the velocities 

calculated from assumed harmonic motion of the base in three degrees of freedom.  For 

example, the anthropomorphic robot was tested in a configuration expected to provide a 

large inertia/nonlinear force ratio, as predicted by Figures 4-5, 4-13, and 4-14 (0°, 20°, 

70°).  The ratio of the inertia to nonlinear effects is large, as can be seen in Figure 4-19 

(in these plots, the inertia and total force traces nearly overlay and are indistinguishable).   
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Figure 4-19 

Anthropomorophic Interaction Forces, Large Inertia Effects 
 

The same comparison is shown in Figure 4-20 with the robot in the configuration [0°, 

85°, 10°], which is a region where the coriolis forces are expected to be large as well as 
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near a case 2 inertial singularity.  The reduced ability of the robot to produce inertia 

forces is seen in the y direction as well as the increased coriolis effects (coriolis and total 

traces are nearly overlaid in the second subplot).  Also, note the increased centrifugal 

forces in the z direction (centrifugal and total traces are overlaid in the third subplot).  

Since both joints are nearly straight out, the centrifugal forces due to joints 2 and 3 act 

primarily in the z direction.  This scenario is near an inertial singularity region, which 

will be avoided if possible.  The nonlinear effects give even more reason to avoid these 

joint space configurations. 
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Figure 4-20 

Anthropomorphic Interaction Forces, Near Singularity Case 2 
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Figure 4-14 predicted large centrifugal forces in a region with expected large inertia 

forces.  The same comparison is shown in Figure 4-21 in the configuration [0°,20°,-10°], 

shown in Figure 4-22.  In this case, the inertia forces act primarily in the y direction, 

while the nonlinear centrifugal forces all align primarily along the x-axis.  The ratio of 

the inertia to nonlinear forces becomes smaller in the x direction, which results in more 

nonlinear effects in the total force trace.  This is clearly seen in the top figure where the 

centrifugal (dashed line) effects are picked up in the total force trace.     

 

 

0 1 2 3 4 5 6
-60
-40
-20

0
20
40

Comparison of Force Effects (0°,20°,-10°)

Fo
rc

e 
x 

(N
)

Inertia    
Coriolis   
Centrifugal
Total      

0 1 2 3 4 5 6
-100

0

100

Fo
rc

e 
y 

(N
)

0 1 2 3 4 5 6
-200

0

200

Time (s)

Fo
rc

e 
z 

(N
)

 
Figure 4-21 

Anthropomorphic Interaction Forces, Large Centrifugal Effects 
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Figure 4-22 

Anthropomorphic Configuration with Large Nonlinear Forces 
 

 

4.3.1 Amplitude Effects 

During active damping (this will be discussed more in Chapter 5), the joints will be 

actuating harmonically to damp the base vibration.  The effect of the amplitude of the 

harmonic joint motion has not yet been considered.  As an example, consider prescribing 

harmonic joint accelerations: 

co s                                           (4 -1 6 )A tθ ω=&&   

The joint velocities will be: 

sin                                                      (4-17)A tθ ω
ω

=&  

  z 

x 

20°10° 

1θ
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The ratio of the joint accelerations, which directly affect the inertia effects, to the square 

of the joint velocities, which directly affect the centrifugal effects and occur at the first 

harmonic of the fundamental frequency, is given by: 

22
2

2

cos                                                           (4-18)
( )sin

A t
A t

θ ω
θ ω

ω

=
&&

&

 

The ratio of their amplitudes becomes: 

2

2
                                                                (4-19)

A
θ ω
θ

=
&&

&

 

Alternately, if two joints are actuating, the link accelerations and velocities are given by: 

1 1 1 2 2 2

1 2
1 1 2 2

1 2

cos cos

sin sin                                               (4-20)

A t A t
A At t

θ ω θ ω

θ ω θ ω
ω ω

= =

= =

&& &&

& &

 

The ratio of the joint accelerations, which drive the inertia effects, to the product of joint 

velocities, which drive the coriolis effects, becomes: 

1 1 2

21 2

                                                               (4-21)
A

θ ωω
θ θ

=
&&

& &

 

The frequencies of actuation will be driven by the natural frequencies of the 

macromanipulator, which are not controllable.  However, the ratio is also inversely 

proportional to the amplitude of motion, which is controllable.  This issue is addressed 

more rigorously in Chapter 5, where the joint amplitudes are related to the feedback gains 

and appropriate gain limits established.  By limiting the amplitude of motion of each 

joint, both of the nonlinear effects will be reduced.   
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For example, consider the anthropomorphic robot in a configuration of [0°, 75°, 10°].  

The second link is moved slightly from the configuration used in Figure 4-20 so the robot 

is not as near the inertial singularity region.  The inertia, coriolis, centrifugal, and total 

forces are shown in Figure 4-23.  The top two plots show the interactions due to all three 

joints actuating with constant amplitudes of approximately 23°.  The bottom two plots 

show the forces when the joint amplitudes are reduced in half.  While this results in lower 

inertia forces, it also has the effect of improving the ratio of the inertia/nonlinear effects. 

 

 
Figure 4-23 

Effect of Reducing Joint Amplitudes on Nonlinear Effects 
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4.4 CG Method to Identify Critical Interaction Force Effects 

This chapter concentrated on the interaction effects directly controllable by the rigid 

robot, which are the inertia and nonlinear rigid effects.  The method originally used to 

develop the force equations is the Newton-Euler method described in Section 3.3.  

However, a much more efficient method may be used to develop the interaction forces 

directly controllable by the rigid robot.  This made developing the six DOF 

anthropomorphic/wrist force equations manageable and was the method used to derive 

equations A-48 through A-50 in Appendix A. 

The micromanipulator does not have a fixed point, so the interaction forces acting 

between each link are found by summing the moments about the CG of each link.  

Alternatively, the moments may be summed about the CG of the overall robot.  The 

position vectors to the CG of each robot are given in Appendix A.  Let: 

                                                  (4-22)CG CGJ=r θ&&  

The interaction forces are given by: 

( )                                            (4-23)IF CG
d M J
dt

=F θ&  

where M is the total mass of the rigid robot.  The inertia and nonlinear rigid effects, 

defined in Equation 4-1, are given by: 

                                                (4-24)
f CG

f CG i

B MJ

N MJ θ

=

= &&
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where Nf represents combined coriolis and centrifugal forces.  If desired, the 

macromanipulator inertia effects may be added by including the base direction cosine 

matrix, which is defined and discussed in Book [8], Lew [34], and Senda [62].   

  1
   1  

 1

                                                             (4-25)

z y

CG CGr z x CGr

y x

f f CGB A J

θ θ
θ θ
θ θ

− 
 = +  
 − 
+ =

r r r
 

where rCGr is the position vector (from the base) to the CG of the rigid robot and θx, θy, 

and θz are the small base rotations about the x, y, and z axis. 

 
4.5 Conclusions 

 
The interaction forces and torques will be used in the control scheme to add damping 

to the flexible base.  At this point, some general conclusions should be made about the 

interaction effects, which will be used to develop the vibration controller and gain limits 

discussed in Chapter 5.  

1) The nonlinear and inertia effects are driven by two factors: the configuration of the 

robot and joint accelerations and velocities.  The inertia performance measure introduced 

in equations 4-2 and 4-3 and plotted in Figures 4-5 through 4-12 can be used to choose 

inverse kinematic solution(s) best suited for inertial damping.  As an example, consider 

the anthropomorphic robot in the two configurations shown in Figure 4-24.  The left 

configuration shows a very poor configuration for inertial damping (case 2 inertial 

singularity), while the alternate inverse kinematics solution shown on the right will 

provide much better inertia force performance.  
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Figure 4-24 
Alternate Inverse Kinematic Configurations for Anthropomorphic Robot 

 

On the other hand, consider the configuration shown in Figure 4-22, which resulted in 

large centrifugal forces.  The alternate inverse kinematics solution would not provide an 

improvement in performance in this case since the problem results from a combination of 

effects created by all of the joints, which would occur in either configuration.  

2) In general, the coriolis forces are largest near inertial force singularity regions, 

while the centrifugal forces can become large in regions where inertia forces are large.  

The centrifugal torques are largest near inertial torque singularity regions, while the 

coriolis torques are more of the concern.  There are configurations, however, where one 

or both can interfere with the ability of the robot to create effective inertia forces or 

torques. 

3) The inertia effects are functions of the joint accelerations, while the nonlinear 

effects are functions of the joint velocities.  The amplitude of joint motion directly 

influences the ratio of the inertia to nonlinear effects, as shown in equations 4-19, 4-21 
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and Figure 4-23.  The relationship between the joint amplitudes and feedback gains will 

be developed in the next chapter, and gain limits established to ensure this ratio remains 

favorable for inertial damping.   

When the performance index is used in conjunction with the limits on control gains, 

the most important dynamics of the coupled system (equation 3-31) take the form: 

 

0 0 0

0

( )     ( )     ( ) 0 0 0 0
   ( )       ( )  ( ) 0 0 0 0

0 0 0 0 0 0   ( )           ( )   ( )
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w f r f r f
T T

rf
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A J B B C K
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τ τ τ

τ τ
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        + + +        
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&& &
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&& &

0
0   (4 26)

                                                       

 
  = −  
    τ

 

This also assumes the elastic deflections and rates are relatively small compared to the 

acceleration effects.   
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CHAPTER V 

CONTROL SCHEME 
 

 
 

5.1 Introduction 
 

This chapter discusses the control scheme that will be used to provide position and 

base vibration control of a flexible base manipulator.  The goal of the control scheme is 

to add to an existing position controller vibration damping capability.  The rigid robot 

will be commanded to provide the interaction forces and torques to damp the vibration.  

An overview of the control scheme is shown in Figure 5-1.  It is assumed the PID 

position controller is designed separately for rigid robot control.  The rigid robot model is 

given by the third row of equation 3-27.  The coupled rigid/flex dynamics are given by 

the first two rows of equation 3-27, and the flexible manipulator is modeled by equation 

3-19.  The reason this form was chosen for the controller is discussed in Section 5.4.3. 

Figure 5-1 
Combined Position and Base Vibration Control Scheme 
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First, the inverse kinematics/damping performance index check really consists of two 

parts.  The complete performance index will predict the overall ability of the control 

scheme to be effective.  This includes a comparison of the micromanipulator and 

macromanipulator inertia properties as well as weighting matrices to include other 

effects.  The rigid robot performance measure that was introduced in equations 4-2 and 4-

3 will be used in the weighting matrix for the rigid robot and can be used to choose the 

best inverse kinematics solutions for inertial damping.  

Next, the vibration controller is introduced.  One important goal of this section is to 

establish a range of vibration control feedback gains to ensure vibration energy is 

removed from the system.  This involves establishing an upper limit that will limit the 

joint amplitudes such that the interaction effects due to the joint accelerations are greater 

than those due to the joint velocities, hence limiting the significance of the nonlinear 

effects.  In addition, a lower limit is established to ensure higher system modes will be 

damped.  Based on the results from Chapter 4, when the performance index is used along 

with these control gains, the most important dynamics take the form of equation 4-26.  In 

order to add damping to the system, the joint accelerations will be commanded out of 

phase with the flexible base velocity.   

The control scheme takes advantage of the fact that the base vibrations are of 

relatively high frequency compared to the rigid robot motion required to perform a task.  

The separation of bandwidths, or time constants, between the position and vibration 

control loops allows them to be considered separately.  This is not addressed further here, 
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but more detail can be found in references [11], [33], and [35].  However, it is important 

to check the validity of this assumption for the specific application.   

It may be desirable in some cases to provide feedback proportional to the velocity and 

position, akin to an ideal vibration absorber.  This can give more flexibility in improving 

system damping but requires additional measurements or manipulation of the measured 

vibration data.  However, the general form of the controller as well as guidelines for 

choosing feedback gains will remain the same for either form. 

Finally, the control performance of the linearized system will be discussed in the 

single degree of freedom case.  Root locus plots based on the linearized models verify 

that, over a range of feedback gains, damping can be added to the flexible system.  For 

these studies, it has been assumed the rigid robot model takes the form of the third row in 

equation 3-27.  The hardware on which this control scheme was implemented was a 

hydraulically operated robot.  The actuator dynamics dominated the performance of the 

experimental robot, so this effect is also discussed in Section 5.4.5.    
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5.2 Performance Index 

The performance index may be used for two tasks.  First, it may be used to predict the 

expected effectiveness of the inertial damping control scheme.  This needs to include a 

check for inertial singularity points and include other effects, such as the 

macromanipulator inertia and limits on allowable joint motion.    

The following performance index will provide this measure: 
1[ ( ) ( ) ] ( ) ( )                          (5-1)T T T T

m f m m r mPI M W M B W B−  =  x θ θ x θ θ θ θ% % && % % &&&& &&  

where: 
[maximum flexible base accelerations]

[maximum rigid robot joint accelerations]                                  (5-2)
m

m

=

=

x

θ

&&

&&
 

By including the maximum base accelerations and joint accelerations, a direct measure of 

the micromanipulator to macromanipulator interaction forces and torques can be made.  

In addition, different limits on joint accelerations can be accounted for via the maximum 

acceleration vectors.  This could be important if the actuators of the rigid robot have 

bandwidth limitations or can saturate, which may impact the effectiveness of this 

technique.  On the other hand, if the rigid robot can accelerate its links rapidy it will be 

more effective. 

The micromanipulator and macromanipulator inertia properties are given by: 

0

0 0

( )
                

( )
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where these are the inertia effects from equation 4-26 linearized about an operating point.  

It is assumed the macromanipulator is in a fixed joint configuration so the 
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macromanipulator properties are assumed approximately constant, but in reality they will 

vary with the configuration of the macromanipulator.  Regardless, this performance 

measure will predict the expected performance based on the inertia properties of the 

macromanipulator in any configuration.  The inertia matrices times the acceleration 

vectors provide the forces and torques due to the flexible and rigid manipulators in each 

direction.  In the most general case, this results in two 6x1 vectors.  The transpose of 

these vectors times the vectors of the forces and torques results in a constant equal to the 

sum of the square of the forces and torques.    However, this measure alone does not 

indicate whether the rigid robot has the ability to generate these interactions in multi-

degrees of freedom.  Thus the weighting matrices need to be included. 

The rigid robot weighting matrix is given by: 

max

( ) ( )
 N                                                   (5-4)

    ( ) ( )

T

r T

B B
W

B B
=

θ θ

θ θ

% %

% %
 

This was partially discussed in Chapter 4 along with its usefulness in determining joint 

space configurations better suited for inertial damping.  The only difference here is that it 

is normalized, essentially assigning a penalty as the rigid robot moves away from its best 

configuration.  Another advantage of normalizing the performance measure is that the 

units of the resulting BTB matrix do not matter.   

Some authors have questioned the validity of eigenvalues and singular values for 

systems with physical inconsistencies, such as robots with mixed prismatic and revolute 

joints [20,60].   For example, the third link of the spherical robot is prismatic, so the Bf 

matrix in equation 4-6 has units of mass for the third column while the other columns 
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have units of mass times distance.  This is not a problem if the determinant if Bf is taken, 

but using the determinant introduces many other disadvantages that were discussed in 

section 4.2.1.   However, the weighting matrix is only intended to assign a penalty as the 

rigid robot moves nearer singularity regions.  The units of the resulting system are not 

important since they are normalized, so the resulting weighting matrix is unitless.  N is a 

6x6 diagonal weighting matrix which is similar to the weighting functions used in 

optimal control [23].  Its purpose here is to scale the torques by a constant distance so the 

total forces and torques will have consistent units and may be added, although other 

considerations could be included if desired.  The resulting performance measure for the 

rigid robot is given by: 

2
,m ax2

,m ax
, ,

* ( )                                  (5-5)i
r r i

i x y z
PI W F

N
τ

=

= +∑  

where Fi,max and τi,max are the maximum interaction forces and torques that can be created 

by the rigid robot and  0≤Wr≤1.  The nearer the robot is to a singularity configuration, the 

smaller Wr will be. 

The flexible base weighting matrix provides a scaling factor based on the inverse of 

the flexible base stiffnesses.  It is also normalized based on the minimum stiffness in the 

system.  This has the effect of reducing the weighting in stiffer directions or with higher 

frequency vibration.  Assuming harmonic base vibration, the higher frequencies result in 

lower amplitude vibration and will damp more quickly than the lower frequencies.  N is 

again a scaling factor to normalize the torques.  The flexible weighting matrix is given 

by:      
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min
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The resulting perfomance measure for the flexible base is given by: 

2 2min min
,max ,max

, , , ,

                                  (5-7)
x y z

f i i
i x y z ii i

K GPI F
K NGθ θ θ

τ
= =

= +∑ ∑  

where Fi,max and τi,max are the maximum interaction forces and torques created at the base 

of the rigid robot due to the macromanipulator tip acceleration.  The weighting matrix has 

the effect of reducing the magnitude of the interaction forces and torques due to the 

macromanipulator in stiff directions.   

The overall performance measure compares the ratio of the performance measures 

(PIr/PIf).  Notice it will be larger if the macromanipulator has stiff directions that are of 

less concern for vibration.  Also note it is immaterial whether the units are English or SI 

because the weighting matrices are normalized.  The only requirement on units is that 

units used for the macromanipulator be consistent with those used for the 

micromanipulator.  Finally, although it is not specifically addressed in this dissertation, 
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the measure may be extended to address cases of underactuation or redundancy, since 

there is no requirement for the B or M matrices to be square. 

The measure discussed above will predict, in general, the ability of the inertial 

damping scheme to successfully damp vibration in the macromanipulator.  It may be used 

in the control scheme, and for thoroughness, the full performance measure should be used 

if computational capability allows it.  However, it may also create an unnecessary burden 

on the controller to carry out the calculations real-time.  The reduced rigid robot 

performance measure introduced in equations 4-2 and 4-3 may provide a quicker and 

more easily implementable measure to use actively in the control scheme or in the 

development of pre-programmed trajectories.  This reduced measure was used in Matlab 

simulations and experimental work discussed in Chapters 6 and 7 in order to reduce 

computation time and demonstrated its effectiveness.  

 
5.3 Vibration Controller 

 
In most workspace locations, the inertia effects dominate the controllable interaction 

forces and torques.  The performance index discussed above may be used to choose 

workspace configurations where the inertia effects are large.  In configurations where the 

nonlinear effects become large, the amplitude of joint motion can be limited to improve 

the ratio of inertia to nonlinear effects.  When this is the case, the vibration controller will 

prescribe the joint accelerations out of phase with the base velocity as follows: 

( , )                                      (5 -8 )ID K= −θ θ θ x&& & &  

ID is an inverse dynamics function designed to cancel the significant rigid robot 

dynamics [4,19] and x refers to the flexible base vibration (xf).  K is a diagonal matrix of 
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gains Ki, where Ki is the gain for the ith vibrational degree of freedom.  With the limits on 

gains that will be developed in the next section, the inertia effects are expected to be most 

significant.  Thus the prescribed joint accelerations will be: 

1( )                                                          (5-9)B K−= −θ θ x&& &  

 
However, the joint torques will need to be commanded so the final vibration controller 

takes the form: 

1( ) ( ) ( )                                ( 5 -1 0 )B B Kτ
−= −τ θ θ x&  

Bτ(θ) is as defined in equation 3-27 and    

0

( )
                                                           (5-11)
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It is assumed the rigid robot joint positions, θθθθ, are measured and available for use in 

the control scheme.  There should be a minimum value established for the determinant of 

the inertia matrix to prevent it from being inverted when the robot is passing through a 

singularity configuration.  Although these regions will be avoided for point-to-point 

motion and fixed configuration operation, it may be necessary to pass through the 

singularity regions.  In this case, it will become necessary to limit the commanded output 

from the controller.   

 
5.3.1 Vibration Control Gains 
 

The goal of this section is to establish a range of vibration control feedback gains to 

ensure vibration energy is removed from the system.  The upper limit is developed in 

order to limit the joint amplitudes such that the interaction effects due to joint 

accelerations (inertia effects) are greater than those due to the joint velocities, hence 



 

 104

limiting the significance of the nonlinear effects.  In addition, a lower limit is established 

to ensure higher system modes will be damped. 

 

5.3.1.1 Upper Limit 

In order to establish an upper limit on the feedback gains, first assume harmonic base 

vibration of mode i.  As discussed in Chapter 4, assuming harmonic motion of the rigid 

robot, the inertia effects will be functions of the joint accelerations and, with the proper 

limit on the amplitude of joint motion, will be greater than the nonlinear effects.  Thus, 

the vibration controller will prescribe the joint accelerations out of phase with the base 

velocity in order to add damping to the flexible base.   

The prescribed joint accelerations, velocities, and positions for the jth joint will be 

approximately harmonic and take the form: 
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Here is it assumed the inertia matrix, B(θθθθ), can be linearized and is approximately 

constant about an operating point.  The feedback gains will be selected to ensure this is a 

reasonable assumption and will be discussed in more detail later.   

The maximum amplitude of the prescribed joint motion will occur during the first few 

cycles of vibration damping and for each joint can be written as: 

1( )                                                  (5-13)i i
j

i

K B X Aθ
ω

−

= ≡θ%  
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where A is defined as the amplitude of motion.  It is clear that an upper limit on the 

feedback gains is necessary, if for no other reason than to ensure the joint motion remains 

inside the allowable workspace or to prevent actuator saturation.  Another consideration 

is the ratio of the inertia effects (functions of the joint accelerations) to the nonlinear 

effects (functions of products of the joint velocities).  This was discussed extensively in 

section 4.3.1, and Figure 4-23 showed that the ratio of inertia effects to nonlinear effects 

can be improved by reducing the amplitude of joint motion.  Here, the centrifugal effects 

are considered, so these become functions of the square of the joint velocities: 

1
i

2 2 22

( ) ( )=                                        (5-14)
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j i i i
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θ ω ω
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Solving equation 5-13 for Ki and substituting into equation 5-14 yields: 

2

2 22

1                                                     (5-15)j i

ij

A
A A

θ ω
ωθ

= =
&&

&
  

Likewise, the ratio of inertia to coriolis effects takes the form: 

                                                        (5-16)j i

j ji j A
θ ω

ωθθ
=

&&

& &
 

where ωi and ωj are two different frequencies of base vibration.   

Notice by relating the feedback gains to the amplitude of joint motion, the ratios 

become inversely proportional to the amplitude of motion, A.  Thus, A can be limited to 

ensure the joint acceleration effects remain larger than joint velocity effects.  One upper 

limit is A<1 radian, although there may be more restrictive limits due to other 

considerations.  The gains should be limited such that: 
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min min

max

( )                                                 (5-17)i
i

i

BK A
X

ω< θ%  

The true multi degree-of freedom case is more complex, of course.  In addition, the 

selection of A and Bmin will be specific to the macro/micromanipulator.  The inertia and 

force effects also vary throughout the workspace, as discussed in Chapter 4.  However, 

the above limit will help reduce the significance of the nonlinear effects, even when in 

workspace locations where they can become large.  Also, note this ratio improves with 

decreasing amplitude, which increases the effectiveness of the scheme as the vibration is 

damped.    

This limit also helps validate the assumption that the inertia matrix B can be 

linearized about an operating point.  Consider the sensitivity of the inertia matrix to 

changes in the joint positions.  In order to keep this argument general, these matrices 

consist of terms involving sines, cosines, and combinations of sines and cosines.  This 

general argument is intended to provide an example representative of all of the rigid robot 

effects (inertia, nonlinear, and gravity matrices).  In order to determine the error 

introduced by evaluating B at an operating point, expand B in a Taylor series [6]: 

( )( ) ( )                                             (5-18)i
i

BB B θ
θ

=

 ∂+ ∆  ∂ θ θ

θθ θ
%

%$
 

where ∆θi is harmonic and given by the last equation in 5-12.  The inertia matrix B as 

well as its first partial derivatives are bounded and continuous.  The limits on joint 

amplitudes will ensure the variation term remains small.  Also, note this assumption 

becomes more valid as energy is removed from the system because the joint amplitudes 

are reduced.  This, in general, is applicable to all of the rigid robot effects.    
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5.3.1.2 Lower Limit  
 

A lower limit also needs to be established to ensure higher flexible system modes, if 

excited, will be damped.  The nonlinear effects will still be commanded along with the 

damping effects.  Here a worst-case scenario is considered where the nonlinear effects 

excite a mode of the flexible system.  The goal here is ensure net energy removal from 

the system. 

Assume an initial impulse force δ (N) applied over a finite amount of time T excites a 

fundamental mode of the flexible system.  The rate of change of energy added to the 

flexible base is:  

i     = X cos                                                  (5-19)i i

dW x
dt

N mt
s

δ

δ ω ω

=

− 
 
 

&  

where the base motion is given by the first equation in 5-12.  The energy added to the 

flexible base is given by: 

0

i 0

i

cos

     = X sin

     = X sin  (N-m)                                              (5-20)

T

i i i

T
i

i

W X tdt

t

T

δω ω

δ ω
δ ω

∆ = ∫
 

The rate of change of energy dissipated by the damping controller is [59]: 

2                                                         (5-21)i
dW K x
dt

= − &  

Over one cycle of vibration, the net energy dissipated by the vibration controller is: 
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2
2 2 2

0

2

2 2

0

2

cos

sin 2      = 
2 4

      =                                                        (5-22)

i

i

i i i i

i
i i i

i

i i i

W K X tdt

ttK X

K X

π
ω

π
ω

ω ω

ωω
ω

ω π

∆ = −

 
− + 

 

−

∫
 

This holds regardless of whether velocity feedback alone is used or if velocity and 

position feedback are used.  This is the energy removed over each cycle of vibration, so 

as long as the disturbance is applied over a finite period, the vibration controller will 

remove energy from the system. 

Based on linearizing the system and assuming harmonic motion over each cycle of 

vibration, the nonlinear centrifugal forces take the form (the same form applies to the 

nonlinear torques): 

2

2 2 2 2

2 2 2

( )

( ) ( ) sin

( ) ( )
(1 cos 2 )      (5-23)

2

Ni f j

Ni f i i i

f i i
Ni i

F N

F N B K X t

N B K X
F t

ω

ω

−

−

=

=

= −

θ θ

θ θ

θ θ

% &

% %

% %

 

where Nf represents NCf or NCτ0 given in equation 4-11 for forces and torques, 

respectively and (sinωit)2 was replaced by an equivalent trigonometric identity.  Define Y 

as the amplitude of the nonlinear forces, or: 

2 2 2( ) ( )
( )                                            (5-24)

2
f i iN B K X

Y
−

≡
θ θ

θ
% %

%  

Y may be assumed approximately constant since Nf and B may be assumed 

approximately constant about an operating point, as discussed in section 5.3.1.1.  The 
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nonlinear force may be split into two terms, Y and �Ycos2ωit.  The rate of change of 

energy added to the system due to the first term is given by: 

( ) cos                                                   (5-25)i i i
dW Y X t
dt

ω ω= θ%  

Regardless of the mode or number of modes excited, if Y is approximately constant the 

net work over each cycle of vibration will be small since: 

2

0
( ) cos 0                              (5-26)i

in i i iW Y X tdt
π
ω ω ω∆ = ≈∫θ%  

and the vibration controller will remove any energy added. 

The effect of the second term is more interesting.  Define the first harmonic of the 

fundamental frequency as: 

2                                                                (5-27)i iω ω=  

Consider the flexible base as a damped system responding to a harmonic forcing, or 

2 2 2 ( )cos                                            (5-28)iMx Cx Kx Y tω+ + = − θ%&& &  

 where M, C, and K are inertia, damping, and stiffness properties of the 

macromanipulator and the natural frequency and damping ratio of the flexible base mode 

are given by ωn and ζ, respectively.  Assume the resulting vibration will take the form: 

2 2 cos( )                                                   (5-29)ix X tω φ= −  

where X2 is the amplitude of the vibration and φ the resulting phase shift.   
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Substituting 5-29 into 5-28 and solving for the resulting amplitude and phase shift yields: 

2

2 2 2 2

                     

1 ( ) (2 )                                     (5-30)n i i n

YX
L

L
M

ω ω ζω ω

−=

= − +

 

2

2 2
n

tan                  

2        =                                                    (5-31)

i

i

n i

i

C
K M

ωφ
ω

ζω ω
ω ω

=
−

−

 

The rate of change of energy into the system and net energy added over one cycle of 

vibration becomes: 

2

2 2
2

2 20 0

2

co s * sin ( )

cos cos sin sin cos

      sin                                                                              (5 -32)

i i

i i i

in i i i i i

dW YX t t
d t

W YX t td t YX td t

YX

π π
ω ω

ω ω ω φ

ω φ ω ω ω φ ω

π φ

= −

∆ = −

= −
∫ ∫

 

Substituting 5-30 into 5-32 gives the net energy added to the system over one cycle of 

vibration: 

2 sin                                                (5-33)in
YW

L
φπ∆ =  

The net energy dissipated by the vibration controller over one cycle of vibration is: 

2
2
2 2                                 (5-34)i i

out i i
K YW K X

L
ω πω π −∆ = − =  

In order to ensure energy dissipation, the goal is to choose Ki such that ∆Wout+∆Win<0.  

This relationship becomes: 

s in 0                                      (5 -3 5 )i iK Lω φ− + <  

The worst-case scenario occurs when the nonlinear harmonics occur exactly at a natural 

frequency of the system, or when  and sin 1i nω ω φ= =  in which case: 
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2

i

1 (2 )

2   =                                                               (5-36)
M

i n

n

L
M

ζωω

ζωω

=

±

 

Thus the lower limit on the control gain to ensure net energy dissipation becomes: 

2                                               (5-37)n
iK

M
ζω> ±  

Consider the meaning of this lower limit.  As long as the vibration control gains are 

selected such that the vibration controller adds no more energy to higher system modes 

than that which can be dissipated by the natural damping in the system, overall vibration 

energy will be removed from the system.  However, this lower limit analysis only 

considers the higher system modes.  In order to prevent excitation of them along with 

other negative consequences of using negative feedback gains, the lower limit is 

realistically chosen as zero.  Using the upper limit established previously, limiting the 

gains to the range: 

,m in m in

,m a x

( )
0 A                                        (5 -3 8 )i

i
i

B
K

X
ω

< <
θ%  

will ensure effects due to joint accelerations are larger than those due to joint velocities, 

hence the inertia effects will also be larger.  It also ensures there is enough damping 

available to successfully remove vibration energy from higher modes of vibration (if a 

concern) if they are excited. 

 

5.4 Controller Performance 
 

This section investigates the control performance of the linearized system, for both 

ideal robot models as well as a hydraulically operated robot.  Using the linearized model 
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shown in Figure 5-2, the controllability of the system is discussed.  Next, the combined 

system controller is discussed.  The theoretical development in previous sections is based 

on assuming increasing vibration control feedback gains results in a direct increase in 

flexible base damping.  This section shows that this is achievable over a range of 

feedback gains and under what circumstances the position and vibration controllers 

interfere.  This is only briefly discussed for the linearized system here.  For more 

extensive analysis on methods to decouple the two controllers, the reader is referred to 

Book and Lee [11], Lee[32,33] and, more recently Lew [35�38].  

In most workspace regions, the inertia effects dominate the interactions, as discussed 

in Chapter 4.  The performance index will be used to ensure the robot operates in these 

joint workspace configurations, whenever possible.  In other regions where nonlinear 

effects can become large, the joint amplitudes will be limited as discussed in section 5.3.1 

to reduce the nonlinear effects.   

Figure 5-2 
Linearized Single Degree of Freedom Control Scheme 
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When these conditions are met, the linearized equations of motion from equation 3-27 

take the form:    

0

( )

( )    

( )                                                            (5-39)

IF f

IF

F B

B

B
τ

τ

τ
τ

≅

≅

≅

θ θ

θ θ

θ θ

&&

&&

&&

 

The rigid robot control model does not include actuator dynamics, which would be a 

factor in most real robotics systems and is discussed in the next section.  In order to 

shorten the notation in this section, FIF will refer to both interaction forces and torques.   

 

5.4.1 Controllability 
 

Controllability can be investigated for the linearized, single degree of freedom model.  

The state space model takes the form:  

/( )/ / 0  0
    1       0       0  0       0

                        
    0       0        0  0     1/
    0       0        1  0       0

x x B B MC M K M
x x

B

τ

τ

τ
θ θ

θθ

  − −     
      
      = +      
      

        

&& &

&

&& &

&

 (5-40)
 

The controllability matrix [55] has a rank of four except when B=0 (Bτ is finite).  The 

determinant of the controllability matrix is given by: 

2 2

4 4det                                                 (5-41)B K
B Mτ

=  

Assuming the form of the controller given in equation 5-10, the system has full state 

controllability by the rigid robot joint torques, τ, except when B=0.  Thus this is a 

sufficient but not necessary condition for controllability of the system since the states 

could still be controllable by some alternate controller form.   
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For the multi-degree of freedom case, this corresponds to an inertial singularity point 

discussed in Chapter 4.  In these configurations, the rank of the controllability matrix 

reduces to two and, assuming the use of the controller in equation 5-10, the rigid robot 

inertia matrix is not invertible.  Another problem situation occurs when the ratio of 

macromanipulator stiffness to inertia (K/M) becomes very small, which indicates an 

extremely flexible base or large macromanipulator.  This would also present a problem 

since there will be no coupling between the rigid robot interactions and the mode of 

vibration.  Note the performance index described in section 5.2 would also predict 

impacted performance in all of these scenarios.       

 

5.4.2 Ideal Rigid Robot Model Control Performance 
 

The general case of position and velocity feedback is investigated here (gain limits 

developed in Section 5.3.1 are applicable for either case).  Simulations were built using 

velocity and position feedback as well as the more specific case of velocity feedback 

only.  Experimental work used acceleration feedback with actuators that act as a velocity 

source.  

The compensated closed loop transfer function is affected by both the joint controller 

and vibration controller and has a characteristic equation given by: 

2 2

( )
1                                  (5-42)

pv
v

pos dv

K
K sPD Kcharacteristic equation

B s Ms Cs Kτ

+
= + +

+ +
 

PDpos represents a proportional-derivative position controller for the rigid robot.  The last 

term is the vibration controller.  The interaction forces and torques, are prescribed as: 
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/ ( )                                    (5-43)pv
IF IF v

dv

K
F K x x

K
τ = − +&  

and are generated by accelerating the links of the rigid robot.  The transfer function with 

the vibration controller feedback gain Kv as the multiplying factor takes the form [55]: 

2

vibration control 2 2

( )
( )                (5 44)

( )*( )

pv
v

dv

d p

K
B s K s

KG s
Ms Cs K B s K s K

τ

τ

+
= −

+ + + +
 

Consider the typical case of a flexible base with a low fundamental mode (<2 Hz) and 

low damping.  Under these circumstances the dominant flexible system poles are very 

close to the imaginary axis and at a value roughly equal to the first natural frequency of 

the system.  Figure 5-3 shows a pole-zero map of equation 5-44, with lightly damped 

flexible poles near the jω axis, critically damped rigid position control poles, and the 

placeable vibration control zero.  To add damping directly to the system, the departure 

angle from the complex pole (the top one is considered here) would be approximately 

225°, as shown in Figure 5-3: 

 180 90 180 2 * 225                                (5-45)φ θ− + − + =o o o o  

where φ represents the angle of the vector from the rigid control poles to the flexible pole 

and θ the angle of the vector from the vibration control zero to the flexible pole. 
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Figure 5-3 

Pole-Zero Map of Closed Loop System 
 

For critically damped performance and in order to limit the zero to the left half plane 

(θ>0°), the lower limit for the rigid control poles is o5.22>φ .  Note as φ increases the 

speed of the rigid controller decreases since the poles are moving closer to the imaginary 

axis.  Thus, the tradeoff is a limit on position control bandwidth if optimal damping is 

desired, which corresponds to a limit of roughly 2.5 times the fundamental frequency.  At 

the lower limit (φ=22.5°), the zero would need to be placed at an infinite distance along 

the negative real axis to achieve the best vibration control damping, which of course is 

unrealistic.  However, it can be concluded that position plus velocity feedback of base 

vibration gives the best solution for combined position and base vibration control, in the 

case of an ideal rigid robot model. 
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For example, placing the poles at roughly twice the natural frequency of the flexible 

mode gives the best location for the zero at:  

145 2 * tan (1/ 2)                                  (5-46)θ −= − +o  

or at roughly 7 times the natural frequency of the flexible system.  This results in the root 

locus plot shown in Figure 5-4 (again plotted for increasing vibration feedback gains).  

The resulting improvement in flexible pole damping is as desired, but the tradeoff is 

underdamped rigid robot position control performance.  If the feedback gains are large 

enough to achieve critically damped rigid poles, the flexible system damping 

improvement is diminished.  This suggests a lower allowance for the independently 

designed position control loop because the natural frequency of those poles increases 

when combined with an inertial damping controller.   

The effect of the position control gains should also be considered.  In this case, the 

open loop transfer function is given by: 

2

2 2

( )( )
( )                              (5-47)

( ( ))

d p
position control

pv
v

dv

K s K Ms Cs K
G s K

B s Ms Cs K K s
Kτ

+ + +
=

+ + + +

 

The root locus plot for increasing position control feedback gains is shown in Figure 5-5. 

The best flexible damping performance is achieved very quickly and at low gains for the 

position controller. 
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Figure 5-4 

Root Locus for Increasing Vibration Control Feedback Gains 
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Figure 5-5 

Root Locus for Increasing Position Control Feedback Gains 
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This can also be seen by considering the closed loop transfer function between the 

interaction forces and desired joint position: 

2 2

( )                                         (5-48)
( ) ( )

1

f
pos

IF

pvd
v

pos dv

B
PD

BF s
Ks K sPD K

B s Ms Cs K

τ

τ

θ
=

+
+ +

+ +

 

Low position control gains also help reduce the interaction forces due to commanded 

movement, and hence unwanted vibration, induced by the rigid manipulator.  Note using 

the scheme shown in Figure 5-1, the vibration control performance will not be affected.  

During active damping when the base vibration is significant, torque inputs required by 

the position controller are much smaller than those due to the vibration controller.  When 

the base vibration subsides, the position controller will ensure the robot is in its correct 

position and with low PD gains any additional correctional movements will not induce 

vibration back into the system.  On the other hand, very low gains are not desirable 

because it will lead to poor position control performance.  A tradeoff is to ensure the rigid 

robot moves slowly enough that the interaction forces and torques generated are not 

significant.  The interactions can also be reduced by combining the vibration control 

scheme with trajectories that help minimize inducing vibration (trapezoidal velocity 

profile or command shaping, for example) [15,61,68,70].  It should also be noted here 

that these results are based on the ideal rigid robot model; if nonlinearities or actuator 

dynamics dominate the system response these results are not necessarily applicable.  One 
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representative case is discussed in Section 5.4.5 with a rigid robot dominated by 

hydraulic actuators. 

This indicates it is important to maintain separation of the performance of the two 

control loops.  The work shown here is a quick overview of the controller under typical 

operating conditions.  However, the position controller can interfere with the vibration 

controller, as shown in Figure 5-6.  In this case, the flexible system poles are drawn 

towards the real axis, as desired.  However, the position control poles are drawn towards 

zero, which results in poor rigid robot control performance with increasing vibration 

control feedback gains.   

When the critically damped rigid position control poles are chosen at the natural 

frequency of the flexible system and the zero chosen to cancel it, good performance 

results for both position and vibration control, as can be seen in Figure 5-7.  With a given 

set of PD position control gains, the vibration control feedback gains can be selected to 

achieve the desired effect of increased damping of the lightly damped flexible poles 

while minimizing impact on the position control poles.  In reality, perfect cancellation 

would not occur, but the impact is minimal and in the form of slightly reduced damping 

improvement or slight underdamped position control performance, as shown in Figures 5-

8 and 5-9. 
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Figure 5-6 

Root Locus with Poor Selection of Vibration and Rigid Position Controllers 
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Figure 5-7 

Root Locus with Better Selection of Vibration and Rigid Position Controllers 
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Figure 5-8 

Effect of Choosing Vibration Control Zero too Large 
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Figure 5-9 

Effects of Choosing Vibration Control Zero too Small 
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When velocity feedback alone is used, improved damping is also achievable over a 

large range of gains K, as can be seen in Figure 5-10.  For the flexible manipulator used 

to develop these plots, the natural frequency of the lightly damped poles is approximately 

2 Hz.  The maximum gain recommended by equation 5-38 (assumes Bmin=A=1) is 

approximately K=12, while the maximum damping occurs at approximately K=440.  The 

limits on gains will further help ensure the vibration controller remains in regions where 

increasing the gains directly increases damping.   

 

-8 -6 -4 -2 0 2 -15 

-10 

-5 

0 

5 

10 

15 

Real Axis

Im
ag

 A
xi

s  

Velocity Feedback, Ideal Rigid Robot 

operating range prescribed
by 5-38 

 
Figure 5-10 

Root Locus for Velocity Feedback, Ideal Model 
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5.4.3 Alternate Contoller Form 
 

One alternative to the controller shown in Figure 5-2 would be one that prescribes the 

vibration control via the desired joint positions, as shown in Figure 5-11. 

Figure 5-11 
Alternate Form of Vibration Controller 

 
Consider the poles of the closed loop system with the vibration control feedback 

gains as the multiplying factor (here velocity feedback is considered): 
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The pole zero map of equation 5-49 is shown in Figure 5-12.  Regardless of where the PD 

position control gains are chosen, one of the poles will tend to move toward the three 

zeros at the origin.   This tends to interfere with the vibration damping of the lightly 

damped flexible poles and hence it becomes much more difficult to design the rigid 

position and vibration controllers independently.  This increased interference between the 

controllers can also been seen by considering the poles of the closed loop system with the 

position control gains as the multiplying factor: 
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Figure 5-12 

Pole-Zero Map of Alternate Controller 
 

2 3
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The poles of the closed loop system will move toward the zero with increasing 

position control gains.  Assuming a lightly damped flexible system, for example with 

M=20, C=1, and K=3000, in order to keep the zero driven by the vibration controller 

in the left half plane requires very small values of KvBτ (.0066).  This reiterates the 

increased interference between the vibration and position controllers. 
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5.4.4 Simulations of Single Degree of Freedom Controller  

The single degree of freedom control law was simulated in Matlab Simulink and 

takes the form shown in Figure 5-13:  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-13 
Single Degree of Freedom Matlab Simulation 

 
This model simulates a single link rigid robot mounted on a flexible base, which here is 

simulated as a mass/spring/damper, as shown in Figure 5-14. 
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This simulates the last link of the robot shown in Figure 5-14 moving about an axis out of 

the page.  This model allowed a quick evaluation of the control scheme and its ability to 

effectively damp vibration and maintain position control when a disturbance is applied to 

the system.  The response to a disturbance is shown in Figures 5-15 and 5-16.  Figure 5-

15 shows much quicker damping with the inertial damping controller than without it.  

Figure 5-16 shows the joint motion that was used to damp the base vibration.  
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Figure 5-15 

Simulated Base Motion Due to an Applied Disturbance 
 

 

The scheme also allows the robot to move from one position to another and reduce 

induced vibration significantly.  Figure 5-17 shows the joint actuating about its desired 

position in order to damp the vibration.  The resulting base vibration is diminished with 

the use of the vibration controller, as shown in Figure 5-18.   
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Simulated Joint Motion Due to an Applied Disturbance
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Figure 5-16 

Simulated Joint Motion with Inertial Damping Due to an Applied Disturbance 
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Figure 5-17 

Simulated Commanded Joint Motion 
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Simulated Base motion due to commanded joint movement
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Figure 5-18 

Simulated Base Vibration Due to Commanded Joint Motion 
 

Base velocity feedback alone can also be used and can be seen to be effective at dampng 

vibration due to an applied disturbance, as shown in Figure 5-19.  
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Figure 5-19 
Simulated Inertial Damping Performance with Velocity Feedback 
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5.4.5 Hydraulics Dominated Rigid Robot Model Control Performance 
 

This section extends the previous section to consider the case of a hydraulically 

dominated rigid robot model.  More detail on the development of the model used may be 

found in Chapter 7.  The control loop takes the form of Figure 5-20, again linearized 

using the equations in 5-39 with the exception of the third.  Now the rigid robot is 

commanded as an approximate velocity source.  The joint position controller is left in a 

general form here.   

 

 
Figure 5-20 

Actuator Dominated Linearized Rigid Robot Model 
 

Now the characteristic equation takes the form: 

h
2

PID(s)*K =1+                        (5-51)
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PID is the rigid robot proportional-integral-derivative position controller.  In this case,  if  

τd is small, the system can be considered an appoximate velocity source.  The vibration 

controller and resulting interactions take the form shown in Figure 5-21 (not considering 
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the position controller for the moment).  The rigid robot dynamics are shown on the top 

line with the resulting flexible system dynamics on the lower line.  

 

 
Figure 5-21 

Form of Vibration Controller for Hydraulics Dominated Robot 
 

The open loop transfer function with the vibration control gain as the multiplying factor 

is given by: 

2

vibration control 2( )                       (5-52)
( )[ ( 1) ( )]

pv

d h

K s
G s

Ms Cs K s s K PID sτ
=

+ + + +
  

With increasing vibration position feedback gain, the closed loop poles vary as shown in 

Figure 5-22.  Note increasing feedback gains Kpv leads to an increase in damping of the 

flexible poles over a relatively large range of gains.  Also note the slight increase in 

natural frequency of those poles.  This type of rigid robot can provide an advantage 

because often position measurements are more readily available than velocity 

measurements and can avoid the need for numerical manipulation of the measured 

vibration data.   
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Figure 5-22 

Root Locus for Increasing Vibration Control Gains, Hydraulics Model 
 

The other advantage here is that,  in this case, it is beneficial to have stiffer position 

control gains.  In this case, the rigid robot position and vibration controllers can be 

designed more independently than in the ideal model case.  This can also be seen by 

considering the poles of the characteristic equation in 5-51 with the position control gains 

as the multiplying factor.    The root locus plot is shown in Figure 5-23.  It can be seen 

that increasing position control gains has little effect on the lightly damped flexible 

system poles. 

2

2 2 2
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Figure 5-23 

Root Locus for Increasing Position Control Gains, Hydraulics Model 
 

 

Simulations demonstrating the controller performance in multi-degree of freedom 

operation will be discussed in Chapter 6. 
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CHAPTER VI 
 

SIMULATIONS 
 
 

6.1 Introduction 
 
 

Simulations were built in Matlab to test the ability of the control scheme to damp 

vibration in multi-degrees of freedom.  A macromanipulator was modeled assuming three 

degrees of freedom of vibration and using a recursive Lagrangian technique as described 

in Section 3.2.  Two modes of transverse vibration were assumed in each planar 

direction.  In order to add a sense of realism to the simulation, the third mode in the z 

direction was chosen based on assumed modes for torsional vibration.  This was chosen 

since torsional vibration is common for flexible links and, although it is not a concern for 

single link macromanipulators, it will be a concern for multi-link manipulators.  In 

addition, since torsional vibration is at a higher frequency than transverse vibration, it 

allowed an early assessment of the ability of the scheme to operate over a wide range of 

frequencies.  The resulting equations of motion for the flexible base take the form of 

equation 3-19 with constant matrices.  A three degree of freedom rigid robot was used for 

damping and takes the form of the last equation in 3-27, while the interactions are given 

by equation 4-1.  The purpose of these simulations was to test the controller and gain 

limits discussed in Chapter 5.  In addition, the usefulness of the performance index 
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described in Section 5.2 was tested to determine joint configurations better suited for 

inertial damping. 

The simulations were extended to the case of a two link flexible manipulator with a 

six degree of freedom anthropomorphic/wrist micromanipulator.  The flexible base 

parameters were designed to give base motion similar to the two link experimental 

testbed, discussed in Chapter 7.  The modes modeled in the first link were four transverse 

modes and one torsional mode, and one transverse mode was modeled in the second link.  

The complexity of this model made the simulation time extremely long.  It was decided 

the three degree of freedom simulation with additional higher frequency modes added 

would suffice to study multi-degree of freedom vibration damping and sufficiently 

represented the testbed.  Thus, the baseline simulations used primarily in this study had 

three degrees of freedom of base vibration and used a three degree of freedom rigid robot 

to provide the vibration damping.  

Finally, an alternate configuration of a rigid robot with performance dominated by 

hydraulic actuators was studied.  As discussed in Chapter 5, with a small change to the 

control scheme the controller performance is nearly identical to that of the ideal rigid 

robot performance.  However, the effect of variation in actuator performance can add 

much more uncertainty to the system than the equivalent seen with the ideally modeled 

robot with nonlinearities.  In particular, the effect of increasing the servovalve time 

constant and higher order dynamics were investigated in simulation, primarily prompted 

by issues that manifested during laboratory testing.    
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6.2 Single Flexible Link Macromanipulator with Anthropomorphic Rigid Robot 

The overall schematic of the three degree of freedom simulation is shown in Figure 6-

1.  Starting at the left of the model, trajectory inputs in the form of desired joint 

trajectories are the inputs to the rigid robot.  The trajectory inputs were either constant 

joint positions, used to test the response of the vibration controller to a disturbance input, 

or point-to-point trajectories.  In order to test the use of the performance index in 

predicting inertial damping performance, point-to-point trajectories were generated from 

desired starting and end points.  For each end point in the workspace, there are multiple 

joint space configurations that can be used to reach it (provided the robot is not operating 

at a kinematic singularity, which is assumed for this work).  In each case, one of the joint 

configurations gives predicted better inertial damping performance than the other ones.  

Thus, two tracks were compared in these simulations; one is the track given by the 

beginning and end points in the better joint space configurations, and the other is the 

alternate joint space configuration track.   

The rigid robot model was written in the form of an s-function [21], which gives more 

flexibility in developing the system model and allows modeling nonlinearities.  The 

inputs to the rigid robot are the controller torques, which consist of the PID position 

control torques plus the additional contribution due to the vibration controller.  The total 

input to each joint is given by: 

( ) ( )                                  (6-1)d a aPID ID Kτ = − −θ θ θ x&  

where PID is an independent proportional-integral-derivative controller (or some 

variation such as PI or PD), ID is the inverse dynamics function defined in Equation 5-8, 



 

 137

Figure 6-1 
Matlab Simulation 
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and K is the vibration control feedback gains.  For these simulations, a reduced inverse 

dynamics function consisting of only the interaction force effects was used, or 

1( ) ( ) ( )                                          (6-2)fID B Bτ
−=θ θ θ  

The output of the rigid dynamics s-function are the states of the rigid robot, which are the 

joint positions and velocities.  The joint positions are fed back to the  PID controller.  The 

joint velocities are differentiated to yield the joint accelerations and used to calculate the 

interaction forces and torques, given by equation 4-1.   

The flexible base is also modeled using equation 3-19 as an s-function, with inputs 

the interactions due to the rigid robot.  There is also an option to apply a disturbance 

directly to the flexible base. Since the states of the flexible base are the generalized 

coordinates, the disturbances applied in each direction are applied to all of the states 

governing the motion in that direction.  For example, an applied disturbance in the x 

direction is applied to all of the generalized coordinates that affect the motion in that 

direction.  The states are the generalized coordinates and their rates, while the outputs are 

the overall base motion in the x, y and z directions and their derivatives.  The applied 

distubances and interaction forces and torques are also output and recorded.   All of the 

states and variables are sent to the workspace where they can be stored and analyzed 

later. 

The mass, damping, and stiffness properties of the macromanipulator were 

determined as described in section 3.2 and are given by the 5x5 matrices M, C, and K 

from equation 3-19.  The fully coupled system mass matrix representing the inertia 

properties of the coupled system is given by: 
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1                                  (6-3)T f fM M A B B Aτ τ
−= + +  

where the coupling matrices are given by the appropriate equations in Appendix A.  In 

order to form these equations in the typical state space form, the state matrix is defined 

as: 

1 1

                                    (6-4)T TM C M K
A

I Z

− − − −
=  
 

 

where I is the 5x5 identity matrix and Z is a 5x5 matrix of zeros.  The system states are 

given by: 

[ ]1 2 1 2 1 1 2 1 2 1                               (6-5)Tp p q q s p p q q s=x & & & & &  

where p1 and p2 are generalized coordinates representing two transverse modes in the x 

direction, q1 and q2 represent two transverse modes in the y direction, and s1 represents a 

torsional mode of vibration.  

 The input to the system is defined as: 

1 1

                                  (6-6)
         

T TM M
Input

CZ

− − +
=  
 

F D  

where CZ is a column of five zeros.  D are disturbances that can be directly applied to the 

system generalized coordinates and F is the 5x1 set of interaction forces and torques.  For 

most of the baseline simulations, only the interaction forces were calculated, but for some 

simulations both interaction forces and torques were included as discussed in Section 

6.3.2.  In the general case, F is given by: 

i
IFi

z=L

+ ( )                                (6-7)
zIFiF φ τ∂=
∂

F  
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where i represents the force or torque applied to the ith generalized coordinate and φ 

represents the associated mode shape.  The resulting base motion in each direction is 

given by: 

1 2

1 2

1

                                        (6-8)
x p p
y q q
z s

= +
= +
=

 

 

6.3 Simulation Results 
 
 
6.3.1 Disturbance Rejection 
 

First, the performance of the controller was tested in three degrees of freedom with 

the inertia and nonlinear effects modeled, i.e. the terms in each of the three equations in 

3-27 that contain base translational effects and rigid robot effects.  This allowed an 

assessment of the performance of the controller and the gain limits discussed in section 

5.3.  In these simulations, velocity feedback of the base vibration was used.  The 

performance of the vibration controller in a configuration of [45°,20°,-70°], the 

configuration shown in Figure 6-2, is shown in Figure 6-3.  The controller gains were 

selected near the upper limit prescribed by equation 5-38 in order to provide maximum 

damping performance.  The associated joint motion may be seen in Figure 6-4 and the 

total end point positions in the x, y, and z directions are shown in Figure 6-5.  Each joint 

actuates about its operating point to provide the necessary interactions to damp the base 

motion.  As can be seen, the scheme requires relatively small joint motions to damp the 

vibration. 
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Figure 6-2 

Anthropomorphic Robot Configuration [45°,20°,-70°] 
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Figure 6-3 

Simulated Base Vibration Due to an Applied Disturbance 
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Figure 6-4 

Simulated Joint Motion Due to an Applied Disturbance 
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Figure 6-5 

Simulated Total End Point Position Due to an Applied Disturbance 
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If the control gains are not chosen according to equation 5-38, the vibration controller 

will still remove the overall energy from the system but it is much less effective.  As can 

be seen in Figures 6-6 and 6-7, when the control gains are chosen at three times the 

recommended limits, the joint amplitudes are much larger and the controller works less 

effectively.  This also verifies the reduction in damping predicted in Figure 5-10 when 

the feedback gains are increased past a certain point.  These results verify that there 

should be appropriate limits placed on the feedback gains for best vibration control 

performance.  Note that the overall energy is still removed from the system, and 

relatively quickly compared to the free vibration case shown in Figure 6-3 (note the 

different y-axis scales between the two figures). 
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Figure 6-6 

Simulated Base Vibration Due to an Applied Disturbance, Large Vibration Control Gains 
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Figure 6-7 

Simulated Joint Motion Due to an Applied Disturbance, Large Vibration Control Gains 
 

 

Next, the controller was tested in a worst-case configuration where the nonlinear 

effects are expected to be large compared to the inertia effects, as predicted by Figure 4-

21.  In a configuration of [45°,20°,-10°], which is the configuration shown in Figure 4-22, 

the resulting base vibration can be seen in Figure 6-8.  The associated joint motion may 

be seen in Figure 6-9.  Note the slight increased vibration in the z direction (third plot in 

Figure 6-8).  This indicates that with the vibration controller in place motion by any of 

the joints creates interactions in all of the vibrational degrees of freedom of the base since 

the base model is fully coupled.  Thus, all of the joints used for inertial damping must 

operate cooperatively to damp the overall vibration in the system.  As expected, the 

vibration controller is less effective but still provides more damping than the undamped 
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case.  This does indicate, however, that the control gains have to be carefully selected, 

especially in these regions, in order to ensure successful performance. 
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Figure 6-8 

Simulated Base Vibration with Robot in a Region with Large Nonlinear Effects 
 

 

6.3.2 Interaction Torque Effects 

Interaction torque effects were originally included in simulations but later removed 

due to the time and complexity involved.  In addition, implementation of the torque 

effects in the inverse dynamics would be extremely difficult to implement on the 

experimental system.  The combined performance index measure of equation 4-3, shown 

in Figure 4-11, indicated the torque effects should be relatively small.  However, anytime 

the interaction forces are prescribed, the interaction torques are also commanded.  This 

section describes the effect of including these effects versus the interaction forces only.   
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Figure 6-9 

Simulated Joint Motion with Robot in a Region with Large Nonlinear Effects 
 

As an example, consider the disturbance rejection capability of the control scheme in 

a configuration of  [45°,45°,-70°].  This is similar to the configuration shown in Figure 6-

2 except the second link is slightly further down.  Both interaction force and torque 

effects (equations A-5 through A-7 and A-14 through A-16) are compared with 

performance when only the interaction force effects are considered.   Both results may be 

seen in Figure 6-10.  It can be seen that the vibration control performance is affected very 

little by considering the interaction force effects only.    Thus it was considered a 

reasonable approximation in most workspace locations to model the full interaction 

forces only. 

On the other hand, consider the robot in a configuration of  [-90°,45°,-70°] (same 

configuration for the last two links, but now joint 1 is rotated 135°).  The same 
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comparison is made and shown in Figure 6-11.  The vibration controller still removes 

energy from the system in both cases, but the performance with and without the 

interaction torques is very different.  An area of future research is recommended to 

investigate in more detail the interaction torques and determine appropriate 

simplifications to enable modeling them in a reasonable manner for simulation and 

experimental implementation.  One possible reason for this change in performance is 

discussed in Section 7.5.3. 
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Figure 6-10 

Simulated Base Vibration with Interaction Forces and Torques Modeled, 
Configuration [45°,45°,-70°] 
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Figure 6-11 

Simulated Base Vibration with Interaction Forces and Torques Modeled, 
Configuration [-90°,45°,-70°] 

 
 
 
6.3.3 Multi-Link Macromanipulator Simulations 
 

Simulations were extended to a multi-link case with a macromanipulator model that 

consisted of twelve states.  For the first link, three transverse modes were modeled in the 

x direction, one transverse y mode, and one torsional mode.  One transverse mode was 

modeled for the second link.  These were chosen to be similar to the modes seen on the 

actual testbed and will be discussed in Chapter 7.  A six joint rigid micromanipulator was 

modeled, but only the first three links were used for active damping, again similar to the 

testbed.  Due to the complexity and simulation time required, it was decided to use the 

single link model with additional higher modes of vibration added.   
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6.3.4 Combined Position and Vibration Control Performance 
 

The second goal was to test the ability of the performance index to predict damping 

performance.  In this case, point-to-point rigid robot motion was commanded to simulate 

the robot end effector moving from point-to-point in the joint workspace.  The 

performance index was used to choose the best inverse kinematics track for inertial 

damping.  The preferred track (trajectory 1) along with the alternate inverse kinematics 

track (trajectory 2) are shown in Table 6-1.  Note the other two inverse kinematic 

solutions yield identical results since for the anthropomorphic robot the damping 

performance only varies with the configuration of joints 2 and 3.  Also, note these 

simulations involve commanded rigid robot motion only, while the macromanipulator 

joints are assumed fixed.  Thus, the induced vibrations are due to the motion of the rigid 

robot only.  In reality, vibration would also be induced by macromanipulator motions, 

which would create larger amplitude initial disturbances similar to those discussed in 

section 6.3.1.  However, this research considers the flexible base to be unactuated, which 

is a limited case of the general macro/micromanipulator problem. 

The resulting base vibration can be seen in Figures 6-12 through 6-14.  In each case, 

the bottom plot shows the base vibration due to point-to-point motion of the robot 

following trajectory 2 in Table 6.1 without vibration control.  The third plot shows the 

same trajectory except with the vibration controller.  The second plot in each figure 

shows no vibration control with the robot following Trajectory 1, and the top plot shows 

the robot following trajectory 1 with the vibration controller.  
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Table 6-1 
Simulated Point-to-Point Motion 

End Point 

(m) 

.4 

.4 

.4 

-.2 

.4 

.4 

-.2 

-.2 

.4 

.4 

-.2 

.4 

.4 

.4 

.4 

Trajectory 1 45° 

5° 

60° 

117° 

0° 

83° 

-135° 

2° 

104° 

-27° 

0° 

83° 

45° 

5° 

60° 

Trajectory 2 45° 

65° 

-60° 

117° 

83° 

-83° 

-135° 

107° 

-105° 

-27° 

83° 

-83° 

45° 

65° 

-60° 

Time (s) 0-1 5-21 25-41 45-61 65-80 

 

The associated joint motion of the first link can be seen in Figure 6-15 during the first 

leg of motion (movement from 45° to 117°).  Plots of all of the joints for all of the cases 

may be seen in Figure 6-16 (trajectory 1 is labeled with �PI�).  One clear tradeoff is that 

the joint position is affected when under inertial damping control.  This is especially 

pronounced at the beginning and end of each leg, and is especially noticeable between 5 

and 10 seconds in Figure 6-15.  This is expected since the joint accelerations are largest 

when the robot starts and stops.  The motion, however, is used to quickly damp the 

vibration, as shown in the top plot in each of Figure 6-12 through 6-14.  The other 

tradeoff is the increased amplitude of vibration induced by moving into the better joint 



 

 151

configurations.  This is expected since these regions allow more coupling, which also 

allows the robot to create larger disturbances.  However, these regions also allow more 

effective coupling to damp the vibration more quickly, while the robot in the alternate 

track is much less effective at vibration damping.  The conclusion is that the robot 

modeled by equation 3-27, even with nonlinear effects included, works effectively at 

damping vibration throughout the workspace provided the robot is able to operate in joint 

space configurations better suited for inertial damping.     
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Figure 6-12 

Simulated Base Vibration x Due to Point-to-Point Motion 
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Figure 6-13 

Simulated Base Vibration y Due to Point-to-Point Motion 
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Figure 6-14 

Simulated Base Vibration z Due to Point-to-Point Motion 
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Figure 6-15 

Simulated Joint 1 Motion During Point-to-Point Motion 
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Figure 6-16 

Simulated Joint Motion during Point-to-Point Motion 
 



 

 154

The total end point position in the x and y directions can be seen in Figures 6-17 and 6-18 

respectively.  The goal is that, provide the rigid robot is controlled so θact converges to 

θdes, the vibration controller will damp the base vibration, as shown in Figures 6-12 

through 6-14.  Thus, the total end point position will also be controlled and will have less 

vibration than the system without the vibration controller. 
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Figure 6-17 
Simulated Total End Point Position x During Point-to-Point Motion 
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Figure 6-18 

Simulated Total End Point Position y During Point-to-Point Motion 
 
 

Another interesting phenomenon occurs in multi-degree of freedom damping 

simulations that was not predicted by the ideal single degree of freedom cases discussed 

in section 5.4.  Observe the base vibration shown in Figure 6-12 with the vibration 

controller in place (top plot).  In this simulation, the vibration control gains were 

prescribed at the upper limit given by Equation 5-38.  Note the decrease in frequency of 

vibration from approximately 1.5 Hz (undamped) to approximately .57 Hz (with inertial 

damping).  When the same situation was simulated with vibration control gains reduced 

in half, the damped frequency was slightly higher (.61 Hz) and the damping improvement 

is slightly better, as shown in Figure 6-19.   

Recall these simulations include nonlinearities in both the rigid and coupled 

dynamics, the flexible base is fully coupled and models multiple modes of vibration, and 
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the simulations are for a three degree of freedom rigid robot.  The root locus of the ideal, 

linearized case analyzed in Figure 5-10 and shown again below in Figure 6-20, only 

approximates the true multi-degree of freedom case.  These results could indicate several 

things.  First, it could indicate that the maximum damping available occurs at a much 

lower gain than predicted (case 1).  It could also indicate the flexible poles move away 

from the jω axis with a steep slope (case 2), which would result in the observed decrease 

in frequency of vibration with increasing vibration control gains (case 2).  Note Figures 

5-4 and 5-9 predicted this behavior could occur.   

As noted previously, the rigid robot and vibration controllers need to be designed 

carefully to ensure ideal performance predicted by Figure 5-10.  When nonlinearities and 

other inaccuracies are included, even in simulation, this ideal performance may not occur.  

It is likely achievable with the proper modification of the rigid joint controller and/or 

lower vibration control gains.  Nevertheless, the multi-degree of freedom simulations do 

indicate the damping controller can remove overall system energy and improve vibration 

performance over the system with no vibration damping.   
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Figure 6-19 

Base Vibration x with Reduced Gains for Damping Controller 
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Figure 6-20 

Root Locus for Single Degree of Freedom Ideal Linearized Model 
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6.4 Hydraulic Actuator Effects 
 

The hardware implementation was performed on a hydraulically actuated robot.  In 

order to enhance the clarity of the discussion and focus on the key issue at hand, a single 

degree of freedom case is discussed here.  The simulation is shown in Figure 6-21.  The 

actual robot is hydraulically operated and the joint performance was experimentally 

determined to be modeled as: 

( )                                          (6 9)
( ) ( 1)

h

d

Ks
s s s

θ
τ τ

= −
+

 

which is typical of hydraulic actuators [50,48,75].  For more information on the actual 

robot used in laboratory testing, see Chapter 7.   

 

Figure 6-21 
Hydraulics Dominated Single Degree of Freedom Model 
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First, the baseline damping performance for the inertially damped and undamped 

cases is shown in Figure 6-22 along with the joint motion in Figure 6-23.  As these 

figures indicate, provided the joint acts as a velocity source the control scheme works 

well.  Note the joint motion is nearly out of phase with the vibration displacement as 

commanded, allowing the vibration energy to be absorbed.  Joint 2 was chosen for this 

particular test case because it demonstrated the largest amount of phase lag.  Next, the 

same situation was simulated except with larger τd (as defined in equation 6-9), which 

increases phase lag.  The resulting base vibration and joint motion is shown in Figure 6-

24.  As shown in 6-24, the phasing of the joint motion relative to the vibration has shifted 

and no longer effectively removes vibrational energy.  As can be seen, the effectiveness 

of the scheme decreases, but it is still effective. Provided the actuator can truly be 

modeled as a second order system, the phase lag will be no greater than 90° and the 

vibration control scheme will still work, although the more phase lag the less effective it 

will become. 
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Figure 6-22 

Baseline Performance with Joint 2 Hydraulics Model 
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Figure 6-23 

Phasing of Joint Actuation and Base Vibration, Hydraulics Model 
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Figure 6-24 

Effect of Increasing Phase Lag on Hydraulics Model Vibration Performance 
 
 
 

On the other hand, if the hydraulic dynamics are actually higher order, as has been 

proposed by some authors [50], larger phase shifts may result and create problems using 

this scheme for vibration control. As as example, consider the hydraulic actuator modeled 

as a third order system.  The phasing between the joint motion and the base vibration is 

shown in Figure 6-25.   In this extreme example very large phase shifts can cause 

detrimental effects.   The conclusion is that, when the robot model is not given by the 

typical robot model (third equation in 3-27), it is important to perform system 

identification testing to get an accurate robot model.   Provided the robot dynamics are 

reasonably well known, appropriate motion can be commanded and/or cancelled in the 

inverse dynamics function.      
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Figure 6-25 

Phasing of Joint Actuation and Base Vibration,  Hydraulics Modeled with Higher Order 
Dynamics 
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CHAPTER VII 
 

EXPERIMENTAL WORK 
 
 
 

7.1 Introduction 
 

This chapter describes the experimental testbed and test results.  The testbed 

consisted of a two flexible link macromanipulator with a six degree of freedom 

anthropomorphic/wrist rigid robot mounted to its last link.  The experimental work 

consisted of two primary areas:   

1) Experimental verification of the interaction forces and torques and conclusions 

described in Chapter 4.  The main area of interest was on the controllable interactions due 

to the rigid robot. 

2) Implementation of the vibration control scheme on a multi-degree of freedom testbed 

This chapter will end with a discussion on issues that arose during hardware 

implementation and recommendations for improving the existing testbed. 

 

7.2 Experimental Testbed 
 

A schematic overview of the laboratory setup is shown in Figure 7-1.  One of the 

common problems with experimental results performed on macro/micromanipulators is 

they lack the complexity of real-world applications [10].  For this reason, the testbed was 
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intentionally designed to be as realistic as possible.  The testbed was modified from a 

single link flexible beam/three degree of freedom micromanipulator, used for research in 

[42], to a two flexible link/six degree of freedom micromanipulator.  The real-time 

control is handled by VxWorks Real Time Control Software, Version 5.2 [85,86].  All of 

the control functions that interface with VX Works were written in C [29,43].  The 

control is performed using a Motorola 68040 Microprocessor and Acromag AVME D/A, 

A/D, and DIO boards for processing of the various signals  [44,67].   

The rigid robot consists of a hydraulically operated anthropomorphic robot with an 

IBM 7565 wrist mounted to its last link [27].  The anthropomorphic robot is operated by 

Micro-Precision Textron SS-.5A double vane, SS-.5A single vane, and SS-1A double 

vane actuators, while the wrist is operated by similar vane actuators.  The servovalves are 

Moog series 30 and 31, which operate at a constant maximum current of 15 ma [51,76].  

The outgoing voltage signal from the D/A board is first sent through voltage to current 

amplifiers before the signal is sent to the valves.  US Digital optical encoders are used to 

measure the joint position of the first three links of the robot, while potentiometers are 

used for the last three joints.  Vibration is measured by PCB Accelerometers, one 

mounted along each axis (x, y, and z) [57].  During the initial part of the experimental 

work, a six axis ATI Delta 9105-T Force/Torque sensor was used to measure interaction 

forces and torques at the base of the rigid robot [1].   
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The range of motion of each joint, with coordinates defined in Figure 7-1, is: 
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All angles are defined such that 0° is along the x axis, except for joint 2 which is defined 

non-conventionally to be at 0° when the arm is up horizontally and 90° when straight 

down.  
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Laboratory Setup 
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7.2.1 Rigid Robot Independent Joint Controllers 

 
The dynamics of the experimental robot are dominated by the hydraulic valves.  The 

experimental rigid robot is shown in Figure 7-2.  Each joint was independently controlled 

with a proportional-integral (PI) controller and a dead zone inverse (DZI), as shown in 

Figure 7-3.  The PI gains were chosen based on the hydraulic valve models, which were 

experimentally determined by open loop system identification testing.  DZI is a dead-

zone inverse that was designed to compensate for hydraulic actuator dead zone.  It is not 

the common dead zone inverse as described in [74], but only includes an additional 

constant signal output to counter the effects of the valve dead-zone (zero output is offset). 

The rigid robot torque equation, or last equation in 3-27, is given by the actuator 

specific model.  In the case of Moog servovalves, a first order approximation for low 

frequency performance was used and is given by [75]: 

( )                                                   (7-1)
( ) 1d

Q s K
i s sτ

=
+

 

Where:  
 
Q=flow rate (cubic inches) 
i=current input (ma) 
K=servovalve static flow gain at zero load pressure drop (cubic inches/ma) 
τd=apparent servovalve time constant (sec) 
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Figure 7-2 

Experimental Rigid Robot 
 

 
 
 

 
Figure 7-3 
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However, the relationship between the commanded computer output, τ, and the resulting 

joint motion, θa, was needed.  K generally depends upon the rated flow and input current, 

while τd depends on the flow capacity of the valve.  Since the flow rate is proportional to 

robot velocity and current proportional to the D/A output to the robot, the rigid robot 

model becomes: 

( )                                                   (7-2)
( ) ( 1)

h

d

Ks
s s s

θ
τ τ

=
+

 

Open loop tests were performed to determine the appropriate modeling constants for each 

joint.  One representative example may be seen in Figure 7-4, which shows the response 

of joint 1 to an output signal of �100, which corresponds to an output voltage of 

approximately -.54 volts.  These tests were performed over a range of output values 

expected for inertial damping control and the results averaged over the range of values.  

The resulting model parameters may be seen in Table 7-1. 

Table 7-1 
Model Parameters for Second Order Approximation of Moog Servovalves 

 Kh τd 
Joint 1 -.003459 .00379 
Joint 2 -.00076 .03445 
Joint 3 -.001775 .017704 
Joint 4 .005158 .031648 
Joint 5 .00394 .00356 
Joint 6 .006 .0248 
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Figure 7-4 

Joint 1 Response to D/A Output of -100 
 

An additional concern with the hydraulic actuators is an apparent dead zone behavior 

at low output values.  In this case, the phenomenon manifested itself as a lack of response 

over a range of outputs.  A representative example may be seen in Figure 7-5.  This plot 

clearly shows that when the actuators are operating at a small range of output values, the 

joint does not move.  When it operates outside of this range the joint responds at the 

approximate velocity predicted by Kh.  The first three joints demonstrated a smaller dead 

zone than the last three joints and were the joints used for active damping in this research.  

The dead zone has little effect on the performance of the damping controller in this case, 

but may become more of an issue when additional links are used in future work.  In 

addition, the first three joints of the robot demonstrate a constant null bias and will drift 
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to the upper or lower joint limit.  Unlike many other Moog servovalve models, these do 

not have a null bias adjustment so a constant feedforward signal was added to the 

controller to compensate for this.  The resulting compensator takes the form of equation 

7-3, with the parameters shown in Table 7-2. 

If 0 
If 0                                             (7-3)

r

l

b d
b d

τ τ τ
τ τ τ
> = + +
< = − +

 

 
Table 7-2 

Feedforward Dead Zone and Drift Compensator 
 br bl d 

Joint 1 38 -38 -20 
Joint 2 17 -17 12 
Joint 3 31 -31 23 
Joint 4 70* -70* 0 
Joint 5 150* -150* 0 
Joint 6 130* -130* 0 

 

* Selected slightly lower than measured values to prevent amplification of potentiometer noise 
 

 

The joint controllers were selected for reasonably good performance using a root 

locus design method and the performance was experimentally refined by tuning.  The 

resulting gains may be seen in Table 7-3. 
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Figure 7-5 
Dead Zone Phenomenon in Hydraulic Servovalve 

 

Table 7-3 
Selected Gains for Independent Joint Controllers 

 Kp Ki 
Joint 1 2000 200 
Joint 2 2500 250 
Joint 3 1000 100 
Joint 4 1200 720 
Joint 5 1400 420 
Joint 6 1500 1350 

 

As an example, consider the root locus plot of the selected controller for joint 1, shown in 

Figure 7-6.  The zero at Ki/Kp was chosen near the two poles at the origin in order to 

provide fast, overdamped performance.  Using this ratio of Ki/Kp, the gains were 

increased so the robot operated smoothly for point-to-point motion.  The wrist was 

designed similarly except with more integral gain.  This was selected to provide more 
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disturbance rejection since its observed lab performance was more nonlinear and it 

demonstrated a much larger dead zone region than the anthropomorphic robot.   

The anthropomorphic robot was originally designed by Cannon [15] so mass 

properties were available.  Mass properties of the wrist were estimated.  The inertia 

properties and dimensions of the robot are given in Table 7-4.  The coordinate frames are 

as defined in Figure 7-1, with dimensions defined per the Denavit and Hartenberg 

convention [61] as detailed in Table A-1 and A-3 in Appendix A. 
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Figure 7-6 
Root Locus Design for Independent Joint Controllers 
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Table 7-4 
Dimensions and Properties of Experimental Robot 

Link i ai di (m) mi (kg) rci (m) Ixxi (kg-m2) Iyyi (kg-m2) Izzi(kg-m2) 
0 (inert) 0 .3302 16.0320 .2413 .1920 .1933 .0936 

1 0 .1969 5.0264 .1354 .0299 .0114 .0270 
2 .4001 0 5.5799 .2924 .0171 .0799 .0728 
3 .12065 0 1.488 .09721 .019434 .0186695 .007131 
4 0 .1 .26176 .05 .000230 .000174 .00007332 
5 0 .1 2.1095 .05 .0059179 .006032 .0019024 
6 0 .155 1.7103 .0775 .0056475 .004396 .0017209 

 
 

 
 
7.2.2 Macromanipulator 

 
The macromanipulator was assembled from two hollow T6-6061 aluminum beams in an 

L-shape and mounted vertically from an I-beam mounted to the ceiling of the laboratory.  

The mounting and attachment to the I-beam is shown in Figure 7-7.  The 

anthropomorphic robot with wrist is mounted to the end of the second link as shown in 

Figure 7-8. 
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Figure 7-7 

Macromanipulator Base Mounting 
 

 
The macromanipulator parameters are: 
d0=.1412875 m (outside diameter) 
di=.134188 m (inside diameter) 
ρ=2710 kg/m3 (material density) 
L1=4.6482 m (length link 1) 
L2=1.2192 m (length link 2) 
E=6.8948x1010 Pa 
m1=9.76 kg 
m2=2.56 kg 
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Figure 7-8 
Overall Macro/Micromanipulator Testbed 

 
 
 
The Lagrangian approach described in section 3.2 was used to model the 

macromanipulator, with the assumed modes for transverse vibration given by equation 3-

5 and torsional modes given by equation 3-9.  The system was modeled as described in 

Chapter 6.  The inertia matrix is fully coupled, while the stiffness matrix is diagonally 

dominant with coupling between modes in each direction.     

Lab testing of the macromanipulator allowed some simplification of the model.  This 

allowed scoping the problem to a suitable size to allow simulation in a reasonable 

timeframe.  The configuration results in dominant and highly coupled transverse modes 

and one torsional mode as well as additional higher frequency system modes.  As an 
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example, consider the measured acceleration in the x direction due to an applied 

disturbance in the x direction, shown in Figure 7-9, along with the frequency response of 

the data in Figure 7-10 [5,7,21].   
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Figure 7-9 

Free Vibration x Due to an Applied Disturbance x 
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Figure 7-10 

Frequency Content of x Vibration Due to an Applied Disturbance x 
 

The acceleration data tends to amplify the higher frequency signals, while the lower 

frequencies are more of a concern for end point positioning due to their larger amplitude.  

A more representative measure of the vibration was chosen to be the base position, which 

requires double integration of the accelerations.  It has been noted elsewhere challenges 

associated with integration of piezoelectric accelerometer data due to low frequency drift 

[66,84].  A recommended solution is to high pass filter the data prior to integration.  For 

presentation purposes, the raw acceleration data was filtered using a 4th order high pass 

butterworth filter with a cutoff frequency of .8 Hz  [30,54] before double integration.  

Note this would not be an option for real-time control since phase shift would be 

introduced in the fundamental modes.  Figures 7-11 and 7-12 show the base position and 

associated frequency content. 
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Figure 7-11 

Position x Due to an Applied Disturbance x 
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Figure 7-12 

Frequency Content of x Position Data Due to an Applied Disturbance x 
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The testbed has a high degree of coupling between modes.  Consider the y vibration 

due to an applied disturbance in the x direction, shown in Figure 7-13.  Since these two 

fundamental modes of the 15 foot link are very close in frequency (1 and 1.2 Hz), this 

sometimes created a beating phenomenon, which further complicated the system 

dynamics.  In general, excitation of any of the modes tended to excite one or more 

additional modes in the system.  In order to quantify the performance with and without 

vibration control, free vibration damping ratios were obtained from the log decrement of 

the position data when a single mode was dominant.  For higher system modes and in 

cases of multiple mode excitation, the frequency response plots were used to determine 

the damping ratios.  The direction of excitation and observed modes of excitation are 

summarized in Table 7-5.  Table 7-6 summarizes the frequencies and damping ratios of 

the prominent modes.  

Table 7-5 
Modes of Vibration on Experimental Testbed 

Direction of 
Applied 

Disturbance 

Excited Modes 
Position x 

(Hz) 

Excited Modes 
Position y 

(Hz) 

Excited Modes  
Position z 

(Hz) 
x 1, 4.2 1,1.2 1,1.2 
y 1,1.2,4.2 1.2,7,9.5 1.2,7,9.5 
z 1,1.2,4.2 1.2,7,9.5 1,1.2,7,9.5 

general 1,1.2,4.2 1.2,7,9.5 1,1.2,7,9.5 
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Figure 7-13 

Position y Due to an Applied Disturbance x 
 
 

 
Table 7-6 

Damping Ratios for Macromanipulator Free Vibration Modes 
Mode Frequency 

(Hz) 
Damping 

Ratio 

Link 1 
transverse x 

1 .0186 

Link 1 
transverse y 

1.2 .0067 

Link 1 
torsion 

4.2 .0087 

Higher Mode 7 .00513 

Higher Mode 9.5 .00281 
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7.3 Interaction Forces and Torques 
 

The first part of the experimental work was intended to verify the method used to 

predict the interaction forces and torques and verify work discussed in Chapter 4.  Recall 

the controllable interactions are given by: 

0 0 0 0

( ) ( , ) ( )  ( , , , )         

( ) ( , ) ( )  ( , , , )                        (7-4)
IF f f i j f fc

IF i j c

B N C N

B N C Nτ τ τ τ

= + + +

= + + +

F θ θ θ θ θ θ q q q θ θ

τ θ θ θ θ θ θ q q q θ θ

&& & & &&& &

&& & & &&& &
 

The directly controllable interactions that were the subject of Chapter 4 are given by 

the first two terms in each equation.  However, the actual interaction forces and torques 

are governed by all of the effects, including those due to the motion of the 

macromanipulator.  In order to isolate the effects due to the micromanipulator, the base of 

the macromanipulator was braced as shown in Figure 7-14.  An ATI six-axis force/torque 

sensor [1] was mounted between the micromanipulator and the base of the 

macromanipulator.  Input signals were sent to the rigid robot similar to the motion 

expected during active inertial damping, where the motion is harmonic and given by the 

last equation 5-12. 

   

7.3.1 Single Degree of Freedom Interaction Forces and Torques 
 

 The first goal of this work was to determine if the relationship given by equations 

4-4 and 4-8, governing the inertia interaction forces and torques, provide a reasonable 

approximation of the dominant interactions.  Masses and dimensions of the rigid robot 

were estimated as given in Table 7-4.  In addition to proving the validity of the 
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relationship for the interactions, it also provided an opportunity to obtain mass property 

updates.  The first part of this work involved actuating each joint independently, with 

constant amplitude sine inputs at 1 and 2 Hz, approximately the lowest natural 

frequencies of interest on the tested.  It was expected that this would create dominant 

inertia forces and torques since:  

2

max

2 2

max

20 * cos(2* *1 )
180

14 /

5 /                                                          (7-5)

t

rad s

rad s

πθ π

θ

θ

=

≈

≈

o

&&

&

 

 

An example of the predicted and measured interaction forces and torques due to joint one 

can be seen in Figures 7-15 and 7-16, respectively, in a configuration of [-90°, 45°, 45°].  

This configuration was chosen because it is near the singularity region, as predicted in 

Figure 4-5, but not near enough that it should affect the ability of the robot to create 

effective interactions.  Thus this configuration would be representative of performance 

throughout most of the usable workspace (performance would be better than this in most 

locations).  The nonlinear force effects are included in Figure 7-15 for magnitude 

comparison purposes. 
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Figure 7-14 
Braced Micromanipulator 
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Force x Due to Joint 1 Sine Input at 1 Hz

-15

-10

-5

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

Fo
rc

e 
(N

)
Measured Lab
Predicted Inertia
Predicated Nonlinear

 
Figure 7-15 

Predicted and Measured Interaction Forces at the Base of the Micromanipulator Due to 
Joint 1 Harmonic Motion 

 

 

In order to quantify the results, a goodness of fit parameter was chosen [6] where: 

{ } { } { } , 1 1                        (7 -6 )
x y

E xy E x E yρ ρ
σ σ
−= − ≤ ≤  
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Torque y due to Joint 1 Sine Input at 1 Hz
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Figure 7-16 
Predicted and Measured Interaction Torques at the Base of the Micromanipulator Due to 

Joint 1 Harmonic Motion 
 

Here x represents the measured interaction forces or torques and y represents the 

predicted interaction forces or torques calculated from the inertia effects only and σx and 

σy are the standard deviations of each.  Table 7-7 summarizes these test cases, the matrix 

terms isolated by each test case, and the resulting goodness of fit.  In general, the fits are 

very good with a few exceptions involving actuation of the third link only.  The reason 

for this is because when these tests were performed, link 3 had little inertia 

(approximately 32.9 kg or 7.4 lbs).  In order to create enough inertia to create interactions 

detectable by the force/torque sensor, a relatively large joint amplitude had to be used.  

Nevertheless, the resulting interaction torques were still only around +/-60.8 N-m (+/- 5 
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in-lbs).  Either larger amplitudes would be needed for joint 3, or additional inertia would 

need to be added.  The latter approach was taken for this research. 

Table 7-7 
Single Degree of Freedom Interaction Force and Torque Test Cases 

Test 
 Case 

Joint 
Actuated 

Configuration 
(Degrees) 

Amplitude 
(Degrees) 

Frequency 
(Hz) 

Matrix 
Parameters 

Isolated 

ρ 

1 1 -90,45,45 10 1 Bf(1,1) 
Bτ0(2,1) 

.989 

.984 
2 1 -90,45,45 10 2 Bf(1,1) 

Bτ0(2,1) 
.979 
.977 

3 2 0,90,45 10 1 Bf(1,2) 
Bτ0(2,2) 

.985 

.990 
4 2 0,90,45 10 2 Bf(1,2) 

Bτ0(2,2) 
.971 
.969 

5 3 0,90,0 20 1 Bf(1,3) 
Bτ0(2,3) 

.967 

.987 
6 3 0,90,0 20 2 Bf(1,3) 

Bτ0(2,3) 
.973 
.608 

7 1 0,45,45 10 1 Bf(2,1) 
Bτ0(1,1) 

.977 

.978 
8 1 0,45,45 10 2 Bf(2,1) 

Bτ0(1,1) 
.985 
.979 

9 2 -90,90,45 10 1 Bf(2,2) 
Bτ0(1,2) 

.977 

.978 
10 2 -90,90,45 10 2 Bf(2,2) 

Bτ0(1,2) 
.966 
.976 

11 3 -90,90,0 20 1 Bf(2,3) 
Bτ0(1,3) 

.973 

.962 
12 3 -90,90,0 20 2 Bf(2,3) 

Bτ0(1,3) 
.973 
.973 

13 2 0,45,45 10 1 Bf(3,2) 
Bτ0(2,2) 

.975 

.969 
14 2 0,45,45 10 2 Bf(3,2) 

Bτ0(2,2) 
.940 
.991 

15 3 0,90,75 20 1 Bf(3,3) 
Bτ0(2,3) 

.969 

.974 
16 3 0,90,75 20 2 Bf(3,3) 

Bτ0(2,3) 
.978 
.727 
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7.3.2 Multi-Degree of Freedom Interaction Forces and Torques 
 
The next part of this effort involved extending this to interactions due to multiple 

joints actuating simultaneously, which was required to implement inertial damping in 

multi-DOF.  Figure 7-17 shows an example of the interaction forces created by joint 1 

actuating at 1 Hz, joint 2 at 1.5 Hz, and joint 3 at 2 Hz in a configuration of [45°, 45°, 

60°].  It was predicted that the inertia effects would be dominant in this configuration and 

the effect of higher harmonics would be negligible.  The associated frequency response is 

shown in Figure 7-18. Some higher harmonics are noticeable in the interactions but with 

increasing frequency quickly become less important compared with the inertia effects. 
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Figure 7-17 

Predicated and Measured Interaction Forces Due to Joints 1,2, and 3 Actuating 
Simultaneously 
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Figure 7-18 

Frequency Content of Force y Data Due to Joints 1,2,and 3 Actuating Simultaneously 
 

  

Figure 4-5 predicted poor inertia performance near the inertial singularity region and   

Figures 4-13 and 4-14 predicted the nonlinear coriolis effects would be more of a concern 

in these regions.  Consider the robot in a configuration of [0°, 87°, 56°] (shown in Figure 

7-19) with joint 1 actuating at 1 Hz and joint 2 at 1.5 Hz.  The resulting interaction forces 

along with predicted total forces  (inertia plus nonlinear) in the y directions are shown in 

Figure 7-20.  The total interaction forces due to the actuation of joint 1 is small in this 

configuration, so the force in the y direction, as expected, is relatively small.  The coriolis 

effects are expected to be large in this region, which would result in combinations of the 

harmonics at approximately .5 and 2.5 Hz, in this case.  The frequency content of the 
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measured force data is shown in Figure 7-21 and it can be seen that and the higher 

harmonics have more of an effect here.   

 

Figure 7-19 
Anthropomorphic Robot Configuration [0°, 87°, 56°] 
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Figure 7-20 

Interaction Forces Due to Joints 1 and 2 Actuating Near an Inertial Singularity 
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Figure 7-21 

Frequency Content of Force Data due to Joints 1 and 2 Actuating Near an Inertial 
Singularity 

 

As an example of a region where nonlinear centrifugal forces are expected to be 

larger, consider the configuration [0°,38°,0°], shown in Figure 7-22.  In this 

configuration, it was predicted by Figure 4-14 that the centrifugal force effects would be 

greater.  The resulting force data in the x direction and frequency content are shown in 

Figures 7-23 and 7-24.  Joints 1, 2, and 3 are actuating harmonically at 1, 1.5, and 2 Hz, 

respectively.  In this case, the interaction force effects in the x direction will be primarily 

due to joints 2 and 3.  As discussed previously, joint 3 has relatively little inertia so it was 

expected the higher harmonics consist mainly of 3 Hz content, or twice the frequency of 

joint 2.  Now consider the interaction torques and associated frequency content, as shown 

in Figures 7-25 and 7-26, respectively.  Here instead of the twice the frequency of 
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actuation, the higher harmonics consist of the combination of frequencies, indicative of 

increased coriolis effects, as expected.    

 

 
 

Figure 7-22 
Anthropomorphic Robot Configuration [0°,38°,0°] 
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Figure 7-23 

Interaction Forces with Large Centrifugal Effects Due to Joints 1, 2, and 3 Actuating 
Simultaneously 
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Figure 7-24 

Frequency Content of Force x data with Large Centrifugal Effects 
 

 

Torque x due to Joints 1, 2, and 3 
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Figure 7-25 

Interaction Torques due to Joints 1, 2, and 3 in Configuration (0°,38°,0°) 
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Figure 7-26 

Frequency Content of Interaction Torque Data Due to Joints 1, 2, and 3 
 

 

There are two main conclusions to be drawn from this portion of the experimental 

work.  First, the form of the interaction forces and torques given by equation 4-1 is 

valid, regardless of the rigid robot dynamics.  In the case of this experimental work, the 

joint torque dynamics are dominated by the hydraulic servovalves and are hence very 

different from the ideal robot model cited in most robotics texts.  However, the model 

for the interaction forces and torques is still valid.  The second important point is that, 

regardless of the orientation of the robot, higher (and sometimes lower) harmonics will 

be generated by the robot.  If higher system modes exist, which will be the case with a 

continuous system, higher frequency modes can become excited.  However, the relative 

importance of the harmonics varies throughout the workspace.  With a good 
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understanding of these issues, either these regions can be avoided or the control gains 

selected to ensure overall energy removal from the system.  Note this part of the work 

has assumed constant joint amplitudes, and the ratio of the inertia to nonlinear effects 

will improve as the vibration is reduced.  The next step was to proceed forward with 

implementation of the vibration controller described in Chapter 5.   

 
7.4 Multi-Degree of Freedom Vibration Damping 

 
The final goal of this research was to extend the inertial damping control scheme to 

multiple degrees of freedom.  This is a challenging extension from previous work at 

Georgia Tech for two main reasons.  First, the testbed now has highly coupled modes and 

general system motion in many directions is possible, as discussed in Section 7.2.2.  

Previous testbeds at Georgia Tech demonstrated clear decoupled vibration i.e. the two 

transverse fundamental modes of vibration of the beam were at different frequencies and 

there was little coupling between the two.  Second, the use of three links of the 

micromanipulator requires cooperation between joints because links 2 and 3 of the 

testbed robot both create interaction forces and torques in the same plane.  Hence, their 

movements have to be cooperatively prescribed in order to damp the motion because 

damping motion by either one requires motion in the other.  This forces accurate 

modeling and a better understanding of issues that may result when the robot model 

contains inaccuracies. 

The block diagram for the multi-degree of freedom case can be seen in Figure 7-27.  

The parameters for the assumed rigid robot model were given in Table 7-1 and the 

feedforward and drift compensators were given in Table 7-2 (only the first three joints are 
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shown in the block diagram below since they are the only joints used for inertial 

damping).  The rigid robot PI gains chosen were given in Table 7-3.  The ID (inverse 

dynamics) function is defined as: 

1( )                                              (7-7)fID B Bτ θ−=  

IDij in figure 7-27 is the ith row and jth column of the resulting matrix.  The rigid robot 

actuators respond as a near velocity source so Bτ is given by: 

1

2

3

1  0   0

1  0        0                                                   (7-8)

1  0       0       

h

h

h

K

B
K

K

τ

 
 
 
 

=  
 
 
 
  

 

Bf(θθθθ) is given by equation 4-4 and θθθθ are the actual robot joint angles measured from 

optical encoders.   

The scheme relies on the inverse dynamics function to cancel the rigid robot and 

coupling effects and assumes the inertia effects are the most significant coupling effects.  

As discussed in sections 4.3 and 7.3.1, the inertia effects are dominant in the single 

degree of freedom case.  However, nonlinear effects can become more significant with 

multiple links actuating harmonically.  Thus, the controller also relies on the gain limits 

established in section 5.3.1 to limit the joint amplitudes such that the inertia effects 

adequately capture the significant interaction effects.   
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Figure 7-27 
Block Diagram of Multi-Degree of Freedom Vibration Damping 
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7.4.1 Disturbance Rejection 
 

First, the vibration controller was tested in a configuration of (0°, 45°,-45°) and an 

excitation was applied to the macromanipulator.  The first case considered was with the 

vibration controller turned on during the free vibration, and the resulting base vibration 

and joint motion recorded.  The second case was with the vibration controller on and a 

disturbance is applied to the macromanipulator.  A summary of the test cases and 

calculated damping ratios is shown in Table 7-8.  In most cases, two tests were performed 

for each case and the damping ratios were averaged.  In nearly all cases, as expected, 

multiple modes were excited, but the lower frequency modes were those responsible for 

the largest amplitude of vibration.  In all of the test cases vibration energy is removed 

from the overall system.  The damping controller performance works best for damping 

the fundamental mode at 1.2 Hz, which is the transverse mode of the first link in the y 

direction.  The controller gains for x direction vibration were selected to be low 

compared to the y gains in order to help avoid excitation of the higher frequency modes, 

notably modes at 4.2 and 9 Hz.  A representative example of the recorded base position 

and joint motion can be seen in Figures 7-28 and 7-29. 

 



 

 199

Table 7-8 
Summary of Active Damping Controller Disturbance Rejection 

Disturbance 
Applied  

Mode 
(Hz) 

Detected 
Primarily in  
Directions 

ζ %  
Improvement 

x 1 x .0239 28.5 
x 1.2 y,z .0392 485.1 
x 2 x,y,z .0231 ----- 
x 4.2 x,z .0164 88.5 
y 1 x,z .0499 168.3 
y 1.2 y,z .0332 395.5 
y 4.2 x,z .0111 27.6 
y 7 y,z .0132 157.3 
y 9 y,z .0081 188.3 
z 1 x .0311 67.2 
z 1.2 y,z .0419 525.3 
z 4 x,z .0163 87.4 
z 7 y,z .0166 224.6 
z 9 y,z .0082 191.8 

General 1 x .0256 37.6 
General 1.2 y,z .0359 435.8 
General 4.2 x,z .0120 37.9 
General 7 y,z .0197 284.0 
General 9 y,z .0086 206.0 
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Figure 7-28 

Vibration Control Due to an Applied Disturbance 
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Figure 7-29 

Joint Response Due to an Applied Disturbance 
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7.4.2 Combined Movement and Vibration Control 
 

 The second set of experiments was intended to verify the use of the performance 

index to predict regions of good inertial damping performance.  The robot was 

commanded to move from a configuration of (-27°,0°,83°,0°,30°,90°) to 

(45°,5°,60°,0°,90°,90°), which is one of the legs presented in section 6.3.4 for 

simulated point-to-point motion in a configuration predicted better for inertial 

damping performance.  The resulting base vibration and commanded joint movement 

may be seen in Figures 7-30 and 7-31.  Note the very low amplitude of vibration in 

the x and z directions compared with vibration in the y direction.  The base vibration 

with and without the vibration controller for the robot moving from (-27°,83°,-

100°,0°,90°,90°) to (45°,65°,-60°,0°,90°,90°), which is the alternate inverse 

kinematics path, may be seen in Figure 7-32.  As expected, lower amplitude of 

vibration results in the regions of low coupling, but the vibration controller is much 

less effective.  The tradeoff in the better configuration is the impact on joint 

positioning, since the controller requires small joint movements about the desired end 

point position.  These occurs primarily at the end of the path, although there are a few 

correctional movements made just before the end of the trajectory which helps reduce 

the level of vibration. 
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Figure 7-30 

Base Vibration Due to Commanded Movement 
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Figure 7-31 

Joint Motion During Commanded Point-to-Point Movement with Vibration Control 
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Figure 7-32 

Base Vibration Due to Commanded Movement in Region with Predicted Poor Inertial 
Damping Performance 

 
 
 

7.5 Implementation Issues 
 

 Many implementation issues arose with the experimental testing of the control 

scheme in multiple degrees of freedom.  These will be discussed along with 

recommendations for improving the testbed for future work. 

 

7.5.1 Acceleration Data 
 

The available vibration measurements were PCB piezoelectric accelerometers.  The 

fundamental frequencies of the testbed were very low, approximately .98 and 1.2 Hz.  For 

the model 303A accelerometers, used for x and y vibration measurements, the +/- 5% 

frequency range of these accelerometers is from 1 � 10000 Hz and for the model 308B 
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accelerometers is from 1 � 3000 Hz [57].  The modes of vibration on the new testbed 

were very low and the accelerometers were operating toward the lower limit of their 

useful range.  This was further complicated by the beating phenomenon between the first 

two fundamental modes discussed in Section 7.2.2.  In addition, ideally, the measured 

accelerations would need to be integrated as noted in section 5.4.5.  As noted in several 

sources [66,84], integration of piezoelectric acceleration time histories generally results 

in calculated displacements that are dominated by large, low frequency drifts unless low 

frequency spectral content is filtered out.  In the case of the experimental hardware, it is 

extremely important to get the fundamental (low) frequency modes of vibration and any 

filtering would need to be performed real-time for use in the control scheme.  The use of 

a finite impulse response filter could be designed to avoid introduction of phasing, but 

not implementable real-time.  The use of an infinite impulse response or analog filter 

could be used but higher order filters would be needed to provide a sharp enough cutoff 

to avoid attenuation of the low frequency modes.   

For lab implementation, a second order high pass digital Butterworth filter with a 

cutoff frequency of .15 was used.  This was necessary due to offsets in the accelerometer 

data and it added little phase shift into the fundamental modes.  For this work, it was 

considered a reasonable approximation to use the measured acceleration data and it 

provided reasonable performance.  For future work, it is recommended that direct 

position measurements be used that allow for very low frequency vibration measurement. 
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7.5.2 Hydraulics Effects 
 

 As discussed in Sections 6.4 and 7.2.1, it was assumed, and experimentally 

verified by open loop testing, the hydraulic actuators followed a model of the form of 

Equation 7-2.  Figure 7-33 shows the commanded output from the PC (unitless) and the 

resulting joint response at a low frequency command.  The response is very nearly like an 

integrator, as expected.  The same comparison for a higher frequency commanded output 

is shown in Figure 7-34, which shows much poorer tracking at higher frequencies.   The 

second order servovalve models and parameters in Table 7-1 do not predict this behavior.  

Second order servovalve models were noted by the vendor as being a good 

approximation at frequencies lower than 50 Hz [75,76].  However, the observed behavior 

indicates that a higher order system model is required for accuracy.  Merritt [50] 

recommends a third or fourth order system model, depending on the accuracy of the 

model required.   For future work it is recommended that higher order servovalve models 

be developed from system testing.  Better high frequency response could then be obtained 

by developing phase compensators from the known models.  
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Figure 7-33 

Low Frequency Tracking of Joint 2 
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Figure 7-34 

High Frequency Tracking of Joint 2 
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7.5.3  Joint Torque Effects 
 

 The vibration controller gives reasonably good performance in approximately half 

of the workspace.  Whenever the robot is facing away from the macromanipulator, the 

controller does not function properly to remove energy from the system (Figure 7-35).    

This is due to a combination of two reasons.  First, joint 1 provides a direct, amplified 

input into the torsional mode of the first link in these configurations.  As discussed in 

Section 6.3.2, when the interaction torques are not considered it makes little difference in 

the controller performance in some workspace configurations.  However, in the 

configuration shown in Figure 7-35, the interaction torques have a much greater effect on 

the performance of the vibration controller and should be included in the controller.  This 

effect is magnified even more on the testbed due to the additonal leverage provided by 

the second flexible link.  Given the mode shape equation in 3-9, the torsional mode shape 

is largest at the tip of the beam, hence application of the torque here has the greatest 

effect in exciting it.  This direct excitation combined with poor high frequency tracking, 

as discussed in Sections 6.4 and 7.5.2, rendered these configurations unusable for active 

damping on the current testbed.   

As an example, consider the top view of the macro/micromanipulator shown at the 

bottom of Figure 7-35.  The figure on the left shows a configuration of poor inertial 

damping performance, while the figure on the right shows a configuration in which the 

controller performed better.  Recall the generalized forces due to the micromanipulator 

are given by equation 3-17.  In the case on the left, the interaction forces remove 

vibrational energy from the system, but the torques may add energy.  In the case on the 
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right, both the interaction forces and torques remove vibrational energy from the system.  

This further reiterates the need for including interaction torques in the control scheme. 

 
 

 
Figure 7-35 

Testbed Configuration with Poor Inertial Damping Performance 
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CHAPTER VIII 
 

CONCLUSIONS 
 
 
 

7.1 Conclusions 
 
 This dissertation has developed, simulated, and demonstrated a position and 

enhanced vibration control scheme for a macro/micromanipulator.  The analogous case of 

a rigid manipulator attached to a flexible but unactuated base was used to study the 

directly controllable inertial interaction forces and torques acting between the robot and 

its base.  The �inertial singularities� in the joint workspace were investigated in detail, 

namely the regions where the robot loses its ability to create interactions in one or more 

degrees of freedom.  A performance index was developed to predict the ability of the 

robot to generate interactions and can be used to ensure the robot operates in joint space 

configurations favorable for inertial damping.  It was shown that when this is used along 

with the appropriate choice of vibration control feedback gains, the inertia effects, or 

those directly due to accelerating the links of the robot, have the greatest influence on the 

interactions.  By commanding the link accelerations proportional to the base vibration, 

energy will be removed from the system.  The vibration control signal is added to the 

position control signal.  Simulated and measured interaction forces and torques generated 

at the base of a rigid robot were compared to verify conclusions drawn about the 
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controllable interactions.  In addition, simulation and experimental results demonstrated 

the combined position control and vibration damping ability of the scheme. 

The true contributions began in Chapter 4 with a detailed discussion of the 

controllable interaction force and torques.  A performance measure was introduced which 

predicts the effectiveness of the rigid robot in creating these interactions.  The rigid 

inertia effects (Bf, Bτ0) were studied in more detail and the �inertial singularities� 

investigated.  It was pointed out that these singularities are, in general, different from the 

kinematic singularities.  However, since the variation in performance is governed by the 

joint space configuration of the rigid robot, the performance measure could be used to 

quickly assess predicted inertial damping performance at the multiple inverse kinematic 

joint space solutions and used to operate the rigid robot in configurations better suited for 

inertial damping.   

The inertia effects dominate the interactions in most non-singular configurations, but 

in certain cases, the nonlinear rigid effects may also become significant and these cases 

are discussed.  The control scheme was discussed in Chapter 5.  The vibration controller 

requires an inverse dynamics function to cancel the most important coupled interaction 

effects.  Guidelines on choosing controller gains to ensure the inertia effects are the 

dominant terms were presented.   

Simulation results were presented in Chapter 6 demonstrating vibration damping of a 

three degree of freedom anthropomorphic robot mounted on a flexible base.  Simulations 

demonstrating disturbance rejection as well as the use of the performance index in 

predicting better joint space configurations for vibration damping during commanded 
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motion were included.  Chapter 7 discussed the experimental testbed and presented 

results from two areas of testing.  The first was verification of the interaction force and 

torque effects and work discussed in Chapter 4.  The second was implementation of the 

vibration control scheme on a multi-degree of freedom experimental testbed.  Although 

there were problems that arose with damping in certain workspace configurations, in 

most of the workspace the vibration controller performed well to remove energy from the 

system.  This included both disturbance rejection as well as vibration control during 

commanded movements.  Finally, implementation issues were discussed. 

 

7.2 Contributions 
 
Contributions of this work are: 

1. Extension of the macro/micromanipulator control problem to multiple degrees of 

freedom by considering the analogous problem of a rigid manipulator mounted on a 

flexible base.   

2. Detailed investigation of inertial singularities and variation in performance 

throughout the workspace and development of a performance measure that predicts 

the ability of the micromanipulator to effectively damp base vibration using an 

inertial damping scheme. 

3. Development of a control scheme that provides active base vibration damping in 

parallel with rigid robot position control.  This includes the use of the performance 

index to improve the vibration damping capability of the micromanipulator given a 

desired end point position and establishing appropriate limits on control gains. 
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4. Verification of the above control scheme via simulation 

5. Verification of the above control scheme via experimental work.  This included 

verification of the accuracy of the interaction force and torque predictions and 

demonstration of the effectiveness of the control scheme on a realistic multi-degree of 

freedom testbed.      

This work primarily builds on that performed previously by Lee [11,33], Cannon 

[15,16], Loper [12,42], and Lew [34-40].  This extends their work to include some 

concepts introduced in space robotics research by Papadopoulos, Evangelos, and 

Dubowsky [56] and Torres and Dubowsky [77-79].  In particular, this is the first work to 

develop the complete interaction forces and torque effects for a macro/micromanipulator 

and investigate the variation in performance throughout the workspace.  In addition, this 

is the first work to introduce �inertial singularities,� determine when and why they occur, 

and propose a solution to work around them.  This is also the first work to consider 

multiple modes of vibration and propose control gain limits to ensure overall energy 

removal from the system.  Finally, this is the first work demonstrating multiple-degrees 

of freedom of vibration damping on an experimental testbed, involving multiple joints 

actuating cooperatively for vibration damping.  Although the scheme could not be shown 

to be effective in all configurations, mainly due to implementation issues and simplifying 

assumptions made to scale the inverse dynamics function to an implementable level, this 

work demonstrates a clear contribution to the field.  
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7.3 Recommendations for Future Research 
 

There are many areas of research that could be further investigated including 

implementation issues that were discussed in section 7.5.  As noted in Chapters 6 and 7 a 

more reasonable method of modeling the interaction torque effects is needed.  The 

algorithm described in Section 4.4 allowed for a much easier derivation of the interaction 

forces than the symbolic method described in Section 3.3, but a similar method was not 

found for the interaction torques.  Mainly, the length of the interaction torque equations, 

detailed in Section A.1.2 for the three degree of freedom case, made simulating and 

studying them in detail cumbersome and unimplementable in practice.  More work needs 

to be done in this area, either to discover a much more efficient method of deriving 

expressions for the interaction torques or eliminating effects that are less important.   

The use of input shaping in combination with an inertial damping control scheme is 

an area worthy of future research.  Input shaping techniques are effective at reducing the 

amplitude of vibration induced by commanded movements but typically do not add 

damping to the system.  This becomes particularly noticeable in an example such as that 

shown in section 6.3.4 and 7.4.2, where damping was compared for commanded rigid 

robot movement with and without inertial damping.  If implemented with input shaping, 

vibration created by motion of the robot itself would be reduced and, assuming the robot 

is operating in a region of predicted good performance, the controller could still provide 

disturbance rejection.  Hence, the combination of the two schemes should provide the 

best performance for both commanded movement vibration control as well as disturbance 

rejection.  
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Another area worthy of future research is the effect of implementation of the control 

scheme on a digital controller.  Simulations as well as experimental work were performed 

using continuous system theory.  Implementation involved real-time calculation of the 

control signals during each control loop, based on sampling the appropriate control 

signals (positions and accelerations).  However, with increased computation time, which 

will occur especially if interaction torques are included, sample and hold effects as well 

as finite precision effects may become more of an issue.   

 Another area that should be considered is implementation of the proposed 

controller with a macromanipulator at varying joint angles.  This would change the 

natural frequencies and damping ratios of the modes of vibration, as well as the 

orientation of the applied interaction forces.  The proposed controller should theoretically 

apply as long as the frequency of vibration is measurable, but other unforeseen problems 

could occur. 

As discussed in section 6.3.1, vibration control performance is not as efficient in 

regions of high nonlinear effects when higher modes exist in the system, which requires 

lower control gains.  Performance could possibly be improved by canceling those effects 

in the vibration control scheme or using some alternate controller form.  Another area of 

future research should consider the effect of contact on the tip of the micromanipulator.  

The work performed thus far assumes no contact on the system, whereas the more 

general case would likely involve contact by the micromanipulator.  Appropriate 

modifications to the controller and/or inverse dynamics function may be necessary in 

these cases. 
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APPENDIX A 

 
EQUATIONS OF MOTION 

 
 

 
For completeness, this appendix includes the symbolic form of the fully coupled 

equations of motion for the anthropomorphic robot as well as some of the more important 

equations for the other configurations studied in this work.  As discussed in chapter four, 

some of these effects are more significant than others.  The general form of the 

interaction forces and torques and notation used is: 
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where: 

B matrices are rigid body inertia-like matrices (Bτ is the inertia matrix) 
NR matrices are rigid body coriolis effects 
NC matrices are rigid body centrifugal effects 
G matrices are rigid body gravity effects 
A are flexible body inertia matrices (due to base acceleration) 
NRC are flexible body coriolis effects (due to base rotational velocities) 
NCC are flexible body centrifugal effects (due to base rotational velocities) 
BW are flexible body rotational inertia matrices (due to base rotational accelerations) 
NCM are cross coupling effects due to both joint velocities and base rotational velocities 
 
 

This notation will be used for all robot configurations studied in this work.  As 

discussed in Chapter 3, equations were derived from a Matlab m-file using a Newton 

Euler method.  Due to their length and complexity, great pain was taken to find forms 

that are more useful for the critical rigid and flexible inertia and nonlinear rigid effects.  

However, due to the complexity of the equations this was only done for the some of the 

equations.  The remainder are included in the general (�simple� format) form provided by 

Matlab. 

 
A.1 Three Degree of Freedom Anthropomorphic Robot 

 
The anthropomorphic robot configuration used here is similar to that used in 

experimental work.  The same link parameters and Denavit-Hartenberg parameters were 

used as for the actual robot and the parameters are defined Figure 4-1.  Notice the 

alternate definition of joint angle two.   This was chosen because software code was 

already written to control the robot using these parameters and it avoided numerous 

changes to the software code.  The Denavit and Hartenberg parameters are shown in 

Table A-1. 
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Table A-1 
Denavit-Hartenberg Parameters for Anthropomorphic Robot 

Link ai αi di θθθθi 
0 0 0 d0 inert 
1 0 π/2 d1 θ1 
2 a2 0 0 θ2 
3 a3 0 0 θ3 
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It will be useful to define some constants to help simplify the equations of motion: 
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A.1.1 Interaction Force Effects 
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Rigid Gravitational Forces 
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Flexible Body Rotational Inertia Forces 
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A.1.2. Interaction Torque Effects 
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Rigid Coriolis Interaction Torques 
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Rigid Centrifugal Interaction Torques 
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Rigid Gravitational Interaction Torques 
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Flexible Body Inertia Interaction Torques 
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Flexible Body Coriolis Interaction Torques 
 

NRCτ0(1,1)=-cos(th1)*(cos(th2)*I2yy*sin(th2)-sin(th2)*I2xx*cos(th2)+cos(th2)*I3xx*sin(th2) 
- m3*sin(th3)*sin(th2)*rc3*d1+sin(th2)*m2*cos(th2)*rc2^2+m3*cos(th3)*cos(th2)*rc3*d1 
+2*sin(th2)*m3*rc3^2*cos(th3)^2*cos(th2)-sin(th2)*sin(th3)*m3*rc3*d0 
+2*m3*cos(th2)*rc3*cos(th3)*sin(th2)*a2+cos(th2)*cos(th3)*m3*rc3*d0 
+2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2-sin(th2)*I3yy*cos(th2)-a2*rc3*sin(th3)*m3 
-2*cos(th3)*I3xx*sin(th3)*cos(th2)^2-2*sin(th2)*I3xx*cos(th3)^2*cos(th2) 
+2*sin(th2)*I3yy*cos(th2)*cos(th3)^2+m3*cos(th2)*a2*d0+m2*cos(th2)*rc2*d1 
- cos(th2)*m3*rc3^2*sin(th2)+cos(th2)*m2*rc2*d0+sin(th2)*m3*cos(th2)*a2^2 
+m3*cos(th2)*a2*d1+2*sin(th3)*I3yy*cos(th3)*cos(th2)^2-sin(th3)*rc3^2*m3*cos(th3) 
-cos(th3)*I3yy*sin(th3)+2*m3*sin(th3)*rc3*a2*cos(th2)^2+sin(th3)*I3xx*cos(th3)) 
NRCτ0(1,2)= -cos(th1)*sin(th1)*(-m3*rc3^2+I3xx+I2yy-I3xx*cos(th3)^2- I3xx*cos(th2)^2 
+I3yy*cos(th2)^2+I3yy*cos(th3)^2+m3*rc3^2*cos(th2)^2+m3*rc3^2*cos(th3)^2-m2*cos(th2)^2*rc2^2 
-2*I3yy*cos(th3)^2*cos(th2)^2-m3*a2^2*cos(th2)^2-I2yy*cos(th2)^2-2*m3*rc3^2*cos(th3)^2*cos(th2)^2 
+cos(th2)^2*I2xx+2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2+2*cos(th2)*cos(th3)*I3yy*sin(th3)*sin(th2) 
-2*cos(th2)*sin(th3)*I3xx*cos(th3)*sin(th2)+2*I3xx*cos(th3)^2*cos(th2)^2 
+2*cos(th2)*sin(th3)*m3*rc3^2*cos(th3)*sin(th2)-2*m3*rc3*cos(th3)*cos(th2)^2*a2+I1xx-I3zz-I2zz-
I1zz) 
 
NRCτ0(1,3)= -2*rc1*m1*d0+3/4*I3yy*cos(2*th3+2*th2)+3/4*m3*a2^2*cos(2*th2)-I0yy-2*m3*d0*d1 
+3/4*m2*rc2^2*cos(2*th2)+3/4*m3*rc3^2*cos(2*th3+2*th2)-1/8*I2yy*cos(2*th1+2*th2)- 2*m2*d0*d1 
+1/4*I3xx*cos(2*th1)- 1/8*I3xx*cos(2*th2-2*th1+2*th3)+1/8*I3xx*cos(2*th2+2*th1+2*th3) 
-1/4*m3*a2^2*cos(2*th1)-1/8*m3*a2^2*cos(-2*th1+2*th2)- 1/8*m3*a2^2*cos(2*th1+2*th2) 
+1/8*I2xx*cos(2*th1+2*th2)-1/8*I2yy*cos(-2*th1+2*th2)+1/8*I2xx*cos(-2*th1+2*th2) 
+1/4*I2xx*cos(2*th1)-2*m2*rc2*d0*sin(th2)-2*m2*rc2*d1*sin(th2)-2*m3*a2*d0*sin(th2) 
-2*m3*a2*d1*sin(th2)-1/2*m3*rc3*cos(th3)*a2-3/4*I2xx*cos(2*th2)+1/4*I3xx+1/4*I2yy+1/4*I3yy 
-m0*rc0^2+I1yy-1/2*I2zz+1/4*I2xx-1/2*I3zz-1/2*I1xx+I0zz-m1*rc1^2-1/4*m3*rc3^2-1/2*I1zz 
-m3*d0^2-m1*d0^2-m3*d1^2-1/4*m3*a2^2-1/4*m2*rc2^2-m2*d0^2-m2*d1^2 
-1/4*m3*rc3^2*cos(2*th1)-1/8*I3yy*cos(2*th2-2*th1+2*th3)-1/8*I3yy*cos(2*th2+2*th1+2*th3) 
+1/4*I3yy*cos(2*th1)-1/4*m2*rc2^2*cos(2*th1)-1/8*m2*rc2^2*cos(-2*th1+2*th2) 
-1/8*m2*rc2^2*cos(2*th1+2*th2)-1/4*m3*rc3*a2*cos(th3+2*th2+2*th1) 
-1/4*m3*rc3*a2*cos(th3+2*th2-2*th1)+3/2*m3*rc3*a2*cos(2*th2+th3)-2*m3*rc3*d0*sin(th3+th2) 
-1/4*m3*rc3*a2*cos(th3-2*th1)-1/4*m3*rc3*a2*cos(th3+2*th1)-2*m3*rc3*d1*sin(th3+th2) 
-1/8*m3*rc3^2*cos(2*th2-2*th1+2*th3)-1/8*m3*rc3^2*cos(2*th2+2*th1+2*th3) 
-1/2*I3zz*cos(2*th1)+1/2*I1xx*cos(2*th1)-1/2*I2zz*cos(2*th1)-1/2*I1zz*cos(2*th1) 
 
NRCτ0(2,1)= sin(th1)*(m3*cos(th2)*a2*d1-cos(th2)*m3*rc3^2*sin(th2) 
+2*cos(th2)*I3yy*cos(th3)^2*sin(th2)+m3*cos(th2)*a2*d0+sin(th2)*m3*cos(th2)*a2^2 
-2*cos(th2)*I3xx*sin(th2)*cos(th3)^2+sin(th2)*m2*cos(th2)*rc2^2+m2*cos(th2)*rc2*d1 
-cos(th3)*m3*rc3^2*sin(th3)+m2*cos(th2)*rc2*d0+2*sin(th3)*I3yy*cos(th3)*cos(th2)^2 
-2*cos(th3)*I3xx*sin(th3)*cos(th2)^2- sin(th3)*m3*rc3*a2+cos(th2)*I3xx*sin(th2) 
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+cos(th3)*I3xx*sin(th3)-sin(th3)*I3yy*cos(th3)+cos(th2)*I2yy*sin(th2)-sin(th2)*I2xx*cos(th2) 
+2*sin(th3)*m3*rc3*cos(th2)^2*a2+2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2 
-m3*sin(th3)*sin(th2)*rc3*d0- m3*sin(th3)*sin(th2)*rc3*d1+2*sin(th2)*m3*rc3^2*cos(th3)^2*cos(th2) 
 +2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2+m3*cos(th3)*cos(th2)*rc3*d1+m3*cos(th3)*cos(th2)*rc3*d0 
-cos(th2)*I3yy*sin(th2)) 
 
NRCτ0(2,2)= -3/4*I2yy*cos(2*th2)+1/4*I2yy*cos(2*th1)+1/4*I3xx*cos(2*th1) 
-1/8*I2yy*cos(2*th1+2*th2)-1/8*I2yy*cos(-2*th1+2*th2)-1/8*m2*rc2^2*cos(2*th1+2*th2) 
-1/8*m2*rc2^2*cos(-2*th1+2*th2)-1/8*m3*a2^2*cos(2*th1+2*th2)-1/4*m3*a2^2*cos(2*th1) 
-1/4*m2*rc2^2*cos(2*th1)-1/8*m3*a2^2*cos(-2*th1+2*th2)-1/4*m3*rc3*a2*cos(th3+2*th1) 
-1/4*m3*rc3*a2*cos(th3-2*th1)+1/4*I3yy*cos(2*th1)+1/4*I2xx*cos(2*th1)+3/4*I3xx*cos(2*th3+2*th2) 
-1/4*I3xx-1/4*I2yy-1/4*I3yy-1/4*I2xx+3/4*I2xx*cos(2*th2)+1/2*cos(th3)*m3*rc3*a2 
+1/8*I2xx*cos(-2*th1+2*th2)+2*m2*d0*d1+2*rc1*m1*d0-I1yy+1/2*I1zz- I0zz+1/2*I1xx+m0*rc0^2 
+I0xx+2*sin(th2)*rc2*m2*d0+2*sin(th2)*m3*d1*a2+2*sin(th2)*rc2*m2*d1+2*sin(th2)*m3*d0*a2 
+1/2*I3zz-3/4*I3yy*cos(2*th3+2*th2)+1/8*I2xx*cos(2*th1+2*th2)+1/4*m3*a2^2+m2*d1^2+m1*rc1^2 
+m3*d1^2+m1*d0^2+m3*d0^2+m2*d0^2+1/2*I2zz+1/4*m2*rc2^2+2*m3*d0*d1-1/2*I2zz*cos(2*th1) 
+1/2*I1xx*cos(2*th1)+1/4*m3*rc3^2-1/4*m3*rc3^2*cos(2*th1)-1/2*I1zz*cos(2*th1) 
-3/4*m3*rc3^2*cos(2*th3+2*th2)-3/4*m3*a2^2*cos(2*th2)+1/8*I3xx*cos(2*th2-2*th1+2*th3) 
+1/8*I3xx*cos(2*th2+2*th1+2*th3)-1/8*I3yy*cos(2*th2-2*th1+2*th3) 
-1/8*I3yy*cos(2*th2+2*th1+2*th3)-1/2*I3zz*cos(2*th1)-3/4*m2*rc2^2*cos(2*th2) 
-1/8*m3*rc3^2*cos(2*th2-2*th1+2*th3)-1/8*m3*rc3^2*cos(2*th2+2*th1+2*th3) 
-1/4*m3*rc3*a2*cos(th3+2*th2+2*th1)-1/4*m3*rc3*a2*cos(th3+2*th2-2*th1) 
-3/2*m3*rc3*a2*cos(2*th2+th3)+2*m3*rc3*d1*sin(th3+th2)+2*m3*rc3*d0*sin(th3+th2) 
 
NRCτ0(2,3)= -sin(th1)*cos(th1)*(-I3xx-I2yy+m3*rc3^2+I1zz-m3*rc3^2*cos(th3)^2-I1xx+I3zz+I2zz 
- cos(th3)^2*I3yy+cos(th3)^2*I3xx+I2yy*cos(th2)^2+I3xx*cos(th2)^2+2*m3*rc3*cos(th3)*cos(th2)^2*a2 
-I3yy*cos(th2)^2-cos(th2)^2*I2xx-2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2 
-2*cos(th2)*cos(th3)*I3yy*sin(th3)*sin(th2)+2*cos(th2)*sin(th3)*I3xx*cos(th3)*sin(th2) 
-2*cos(th2)*sin(th3)*m3*rc3^2*cos(th3)*sin(th2)+2*I3yy*cos(th3)^2*cos(th2)^2+m3*cos(th2)^2*a2^2 
-m3*rc3^2*cos(th2)^2-2*I3xx*cos(th3)^2*cos(th2)^2+m2*cos(th2)^2*rc2^2 
+2*m3*rc3^2*cos(th3)^2*cos(th2)^2) 
 
NRCτ0(3,1)= I2zz*cos(2*th1)+1/2*m3*rc3*a2*cos(th3-2*th1)+1/2*m3*rc3*a2*cos(th3+2*th1) 
+1/4*m3*rc3^2*cos(2*th2-2*th1+2*th3)+1/4*m3*rc3^2*cos(2*th2+2*th1+2*th3) 
-1/4*I3xx*cos(2*th2-2*th1+2*th3)-1/4*I3xx*cos(2*th2+2*th1+2*th3) 
+1/2*m3*rc3*a2*cos(th3+2*th2-2*th1)+1/2*m3*rc3*a2*cos(th3+2*th2+2*th1) 
+1/4*I2yy*cos(-2*th1+2*th2)+1/4*I2yy*cos(2*th1+2*th2)+I1zz*cos(2*th1) 
+1/4*m2*rc2^2*cos(-2*th1+2*th2)+1/4*m2*rc2^2*cos(2*th1+2*th2)+1/2*m2*rc2^2*cos(2*th1) 
-1/2*I2yy*cos(2*th1)+1/2*m3*rc3^2*cos(2*th1)-1/4*I2xx*cos(-2*th1+2*th2) 
-1/4*I2xx*cos(2*th1+2*th2)-1/2*I2xx*cos(2*th1)-I1xx*cos(2*th1) 
+1/4*m3*a2^2*cos(-2*th1+2*th2)+1/4*m3*a2^2*cos(2*th1+2*th2)+1/2*m3*a2^2*cos(2*th1) 
-1/2*I3xx*cos(2*th1)+I3zz*cos(2*th1)+I0yy-I0xx-1/2*I3yy*cos(2*th1) 
+1/4*I3yy*cos(2*th2+2*th1+2*th3)+1/4*I3yy*cos(2*th2-2*th1+2*th3) 
 
NRCτ0(3,2)= - sin(th1)*(2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2+cos(th2)*rc2*m2*d0 
+2*sin(th2)*I3yy*cos(th3)^2*cos(th2)+cos(th2)*m2*sin(th2)*rc2^2-2*cos(th2)*I3xx*cos(th3)^2*sin(th2) 
+cos(th2)*m3*d1*a2-sin(th3)*m3*rc3*a2+2*sin(th3)*I3yy*cos(th3)*cos(th2)^2 
-sin(th2)*sin(th3)*m3*rc3*d1-sin(th2)*sin(th3)*m3*rc3*d0-cos(th2)*I2xx*sin(th2) 
- sin(th3)*I3yy*cos(th3)+sin(th3)*I3xx*cos(th3)+2*cos(th2)*m3*rc3^2*cos(th3)^2*sin(th2) 
+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2+2*m3*sin(th3)*cos(th2)^2*rc3*a2+cos(th2)*cos(th3)*m3*rc3
*d0+cos(th2)*cos(th3)*m3*rc3*d1-cos(th2)*m3*rc3^2*sin(th2)+cos(th2)*m3*d0*a2 
-2*cos(th3)*I3xx*sin(th3)*cos(th2)^2-sin(th3)*m3*rc3^2*cos(th3)+cos(th2)*m3*sin(th2)*a2^2 
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-sin(th2)*I3yy*cos(th2)+cos(th2)*I3xx*sin(th2)+sin(th2)*I2yy*cos(th2)+cos(th2)*rc2*m2*d1) 
 
NRCτ0(3,3)= -cos(th1)*(sin(th2)*m3*rc3^2*cos(th2)-cos(th2)*rc2*m2*d0 
-2*sin(th3)*I3yy*cos(th3)*cos(th2)^2+sin(th2)*sin(th3)*m3*rc3*d1-cos(th2)*m3*d0*a2 
-2*sin(th2)*I3yy*cos(th3)^2*cos(th2)-cos(th2)*m3*sin(th2)*a2^2- cos(th2)*m3*d1*a2 
+2*cos(th2)*I3xx*cos(th3)^2*sin(th2)+cos(th2)*I3yy*sin(th2)+sin(th3)*I3yy*cos(th3) 
-sin(th2)*I2yy*cos(th2)+cos(th2)*I2xx*sin(th2)-cos(th2)*I3xx*sin(th2) 
-2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2-cos(th2)*cos(th3)*m3*rc3*d0 
-2*cos(th2)*m3*rc3^2*cos(th3)^2*sin(th2)-cos(th2)*cos(th3)*m3*rc3*d1 
-cos(th3)*I3xx*sin(th3)+m3*sin(th3)*rc3*a2-cos(th2)*m2*sin(th2)*rc2^2-cos(th2)*rc2*m2*d1 
-2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2+sin(th2)*sin(th3)*m3*rc3*d0 
-2*m3*sin(th3)*cos(th2)^2*rc3*a2+2*cos(th3)*I3xx*sin(th3)*cos(th2)^2+sin(th3)*m3*rc3^2*cos(th3))  

 
(A-19) 

 
Flexible Body Centrifugal Interaction Torques 

 
NCCτ0(1,1)=0 
 
NCCτ0(1,2)= sin(th1)*(-I3xx*sin(th2)*cos(th2)-cos(th2)*I2yy*sin(th2)- I3xx*sin(th3)*cos(th3) 
+I3yy*sin(th3)*cos(th3)+sin(th2)*I2xx*cos(th2)+I3yy*sin(th2)*cos(th2) 
-2*m3*rc3^2*cos(th3)^2*cos(th2)*sin(th2)-m3*rc3*cos(th3)*cos(th2)*d0-m3*rc3*cos(th3)*cos(th2)*d1 
-2*m3*rc3*cos(th3)*cos(th2)*sin(th2)*a2+m3*rc3*sin(th3)*sin(th2)*d0 
-2*m3*rc3*sin(th3)*a2*cos(th2)^2-2*m3*rc3^2*sin(th3)*cos(th3)*cos(th2)^2 
+m3*rc3*sin(th3)*sin(th2)*d1-m3*cos(th2)*sin(th2)*a2^2- m3*cos(th2)*d1*a2 
+2*I3xx*cos(th3)^2*cos(th2)*sin(th2)-rc2*m2*cos(th2)*d1-2*I3yy*cos(th3)^2*cos(th2)*sin(th2) 
-m3*cos(th2)*d0*a2+m3*rc3^2*sin(th2)*cos(th2)- m2*cos(th2)*sin(th2)*rc2^2 
+2*I3xx*cos(th3)*cos(th2)^2*sin(th3)-2*I3yy*sin(th3)*cos(th3)*cos(th2)^2 
-rc2*m2*cos(th2)*d0+m3*rc3^2*sin(th3)*cos(th3)+m3*rc3*sin(th3)*a2) 
 
NCCτ0(1,3)= sin(th1)*(cos(th2)*I2yy*sin(th2)-I3yy*sin(th3)*cos(th3)- I3yy*sin(th2)*cos(th2) 
+I3xx*sin(th2)*cos(th2)+2*m3*rc3*cos(th3)*cos(th2)*sin(th2)*a2+2*m3*rc3*sin(th3)*a2*cos(th2)^2 
+m3*rc3*cos(th3)*cos(th2)*d0+2*m3*rc3^2*cos(th3)^2*cos(th2)*sin(th2)+m3*rc3*cos(th3)*cos(th2)*d1
+2*m3*rc3^2*sin(th3)*cos(th3)*cos(th2)^2-2*I3xx*cos(th3)*cos(th2)^2*sin(th3) 
- m3*rc3*sin(th3)*sin(th2)*d0-m3*rc3*sin(th3)*sin(th2)*d1- sin(th2)*I2xx*cos(th2) 
+I3xx*sin(th3)*cos(th3)-m3*rc3*sin(th3)*a2-m3*rc3^2*sin(th3)*cos(th3)- m3*rc3^2*sin(th2)*cos(th2) 
+m3*cos(th2)*sin(th2)*a2^2+m3*cos(th2)*d0*a2+m2*cos(th2)*sin(th2)*rc2^2 
-2*I3xx*cos(th3)^2*cos(th2)*sin(th2) +2*I3yy*sin(th3)*cos(th3)*cos(th2)^2 
+m3*cos(th2)*d1*a2+rc2*m2*cos(th2)*d0+rc2*m2*cos(th2)*d1+2*I3yy*cos(th3)^2*cos(th2)*sin(th2)) 
 
NCCτ0(2,1)= cos(th1)*(-sin(th3)*I3yy*cos(th3)+cos(th3)*I3xx*sin(th3)-sin(th2)*I3yy*cos(th2) 
- sin(th2)*I2xx*cos(th2)+cos(th2)*I2yy*sin(th2)+cos(th2)*I3xx*sin(th2) 
+2*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)^2- m3*rc3*sin(th3)*sin(th2)*d0 
+2*m3*sin(th3)*rc3*a2*cos(th2)^2+2*sin(th2)*m3*rc3^2*cos(th3)^2*cos(th2) 
-m3*sin(th3)*sin(th2)*rc3*d1+2*cos(th3)*I3yy*sin(th3)*cos(th2)^2-2*sin(th2)*I3xx*cos(th3)^2*cos(th2) 
+sin(th2)*m2*cos(th2)*rc2^2+m3*rc3*cos(th3)*cos(th2)*d0+m3*cos(th3)*cos(th2)*rc3*d1 
+m2*cos(th2)*rc2*d1+2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2+m3*cos(th2)*d0*a2 
+2*cos(th2)*I3yy*cos(th3)^2*sin(th2)-cos(th2)*m3*rc3^2*sin(th2)-2*cos(th3)*I3xx*sin(th3)*cos(th2)^2 
-cos(th3)*m3*rc3^2*sin(th3)- m3*sin(th3)*rc3*a2+sin(th2)*m3*cos(th2)*a2^2 
+m3*cos(th2)*a2*d1+rc2*m2*cos(th2)*d0) 
 
NCCτ0(2,2)=0 
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NCCτ0(2,3)= -cos(th1)*(-sin(th2)*I3yy*cos(th2)+cos(th3)*I3xx*sin(th3)- sin(th2)*I2xx*cos(th2) 
+cos(th2)*I3xx*sin(th2)- sin(th3)*I3yy*cos(th3)+2*sin(th2)*m3*rc3^2*cos(th3)^2*cos(th2) 
+2*m3*sin(th3)*rc3*a2*cos(th2)^2- m3*sin(th3)*sin(th2)*rc3*d1+m3*rc3*cos(th3)*cos(th2)*d0 
+2*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)^2+m3*cos(th3)*cos(th2)*rc3*d1- m3*rc3*sin(th3)*sin(th2)*d0 
+2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2-cos(th3)*m3*rc3^2*sin(th3)- cos(th2)*m3*rc3^2*sin(th2) 
+rc2*m2*cos(th2)*d0+sin(th2)*m3*cos(th2)*a2^2+m3*cos(th2)*a2*d1+sin(th2)*m2*cos(th2)*rc2^2 
-2*sin(th2)*I3xx*cos(th3)^2*cos(th2)+m2*cos(th2)*rc2*d1+m3*cos(th2)*d0*a2 
+2*cos(th3)*I3yy*sin(th3)*cos(th2)^2-m3*sin(th3)*rc3*a2+2*cos(th2)*I3yy*cos(th3)^2*sin(th2) 
-2*cos(th3)*I3xx*sin(th3)*cos(th2)^2+cos(th2)*I2yy*sin(th2)) 
 
NCCτ0(3,1)= -sin(th1)*cos(th1)*(I3zz+I2zz+rc2^2*cos(th2)^2*m2+a2^2*cos(th2)^2*m3 
-2*cos(th2)^2*cos(th3)^2*I3xx-cos(th3)^2*rc3^2*m3- cos(th2)^2*rc3^2*m3  
+2*cos(th3)^2*cos(th2)^2*I3yy-I3xx-I2yy+rc3^2*m3-cos(th3)^2*I3yy- cos(th2)^2*I3yy 
+2*cos(th2)^2*cos(th3)^2*rc3^2*m3+cos(th2)^2*I3xx+2*cos(th2)*cos(th3)*I3xx*sin(th3)*sin(th2) 
-2*cos(th2)*cos(th3)*rc3^2*m3*sin(th3)*sin(th2)+2*a2*cos(th2)^2*rc3*m3*cos(th3) 
-2*a2*cos(th2)*rc3*m3*sin(th3)*sin(th2)-2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2) 
-cos(th2)^2*I2xx+cos(th2)^2*I2yy+cos(th3)^2*I3xx-I1xx+I1zz) 
 
NCCτ0(3,2)= sin(th1)*cos(th1)*(I3zz+I2zz-I3xx-I2yy+rc3^2*m3-I1xx+I1zz- cos(th2)^2*I2xx 
+cos(th2)^2*I2yy+cos(th2)^2*I3xx- cos(th2)^2*I3yy+cos(th3)^2*I3xx 
+2*a2*cos(th2)^2*rc3*m3*cos(th3)-2*cos(th2)^2*cos(th3)^2*I3xx+2*cos(th2)^2*cos(th3)^2*rc3^2*m3 
- cos(th3)^2*rc3^2*m3+a2^2*cos(th2)^2*m3+2*cos(th3)^2*cos(th2)^2*I3yy+rc2^2*cos(th2)^2*m2 
+2*cos(th2)*cos(th3)*I3xx*sin(th3)*sin(th2)-2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2) 
-2*cos(th2)*cos(th3)*rc3^2*m3*sin(th3)*sin(th2)-cos(th3)^2*I3yy 
-2*a2*cos(th2)*rc3*m3*sin(th3)*sin(th2)-cos(th2)^2*rc3^2*m3) 
 
 
NCCτ0(3,3)=0                                                                                                                                         (A-20) 

 
 

Flexible Body Rotational Inertia Interaction Torques 
 
Bw0(1,1)= 2*rc2*m2*sin(th2)*d1+2*m3*rc3*cos(th3)*a2- m3*rc3^2*cos(th1)^2 
+I3yy*cos(th3)^2*cos(th1)^2-I3xx*cos(th1)^2*cos(th2)^2-2*I3yy*cos(th2)^2*cos(th1)^2*cos(th3)^2 
-I2zz*cos(th1)^2+m3*d0^2+I3xx*cos(th1)^2+2*I3xx*cos(th3)^2*cos(th2)^2*cos(th1)^2 
-I1zz*cos(th1)^2+I1zz+2*rc2*m2*sin(th2)*d0+m3*rc3^2+I1xx*cos(th1)^2+2*m3*sin(th2)*d0*a2 
- I2yy*cos(th1)^2*cos(th2)^2+I3yy*cos(th2)^2*cos(th1)^2+2*m3*sin(th2)*d1*a2 
+2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*cos(th1)^2*a2-
2*cos(th2)*I3xx*cos(th3)*sin(th3)*sin(th2)*cos(th1)^2-2*m3*rc3*cos(th3)*a2*cos(th1)^2*cos(th2)^2 
+2*cos(th2)*sin(th3)*m3*rc3^2*cos(th3)*sin(th2)*cos(th1)^2 
+2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2)*cos(th1)^2+2*m3*rc3*cos(th3)*sin(th2)*d0 
+2*m3*rc3*sin(th3)*cos(th2)*d0- I3xx*cos(th1)^2*cos(th3)^2+I2xx*cos(th2)^2*cos(th1)^2  
+2*rc1*m1*d0+2*m3*d0*d1+2*m2*d0*d1-m3*cos(th1)^2*a2^2*cos(th2)^2+m3*a2^2 
-2*m3*rc3^2*cos(th2)^2*cos(th1)^2*cos(th3)^2+2*m3*rc3*cos(th3)*sin(th2)*d1 
+2*m3*rc3*sin(th3)*cos(th2)*d1+I2zz+I3zz+I2yy*cos(th1)^2+m3*d1^2+m1*d0^2 
-I3zz*cos(th1)^2+m3*rc3^2*cos(th2)^2*cos(th1)^2+I0xx+m0*rc0^2+m2*rc2^2+m2*d0^2+m1*rc1^2 
+m2*d1^2-m2*rc2^2*cos(th1)^2*cos(th2)^2+m3*rc3^2*cos(th3)^2*cos(th1)^2 
 
Bw0(1,2)= -cos(th1)*sin(th1)*(m3*rc3^2-I3xx-I2yy-m3*rc3^2*cos(th2)^2+m3*a2^2*cos(th2)^2 
-2*I3xx*cos(th3)^2*cos(th2)^2+2*I3yy*cos(th3)^2*cos(th2)^2 
-2*cos(th2)*sin(th3)*m3*rc3^2*cos(th3)*sin(th2)+2*cos(th2)*I3xx*cos(th3)*sin(th3)*sin(th2) 
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+2*m3*rc3*cos(th3)*a2*cos(th2)^2-2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2) 
-cos(th3)^2*rc3^2*m3+m2*rc2^2*cos(th2)^2-2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2+cos(th3)^2*I3xx 
-cos(th3)^2*I3yy-I3yy*cos(th2)^2+I3xx*cos(th2)^2+I2yy*cos(th2)^2 
-I2xx*cos(th2)^2+2*m3*rc3^2*cos(th2)^2*cos(th3)^2+I1zz-I1xx+I2zz+I3zz) 
 
Bw0(1,3)= - cos(th1)*(m3*cos(th3)*cos(th2)*rc3*d0+sin(th2)*m3*cos(th2)*a2^2 
+sin(th2)*m2*cos(th2)*rc2^2+m2*cos(th2)*rc2*d1-cos(th2)*I2xx*sin(th2) 
+2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2-m3*sin(th3)*sin(th2)*rc3*d1-cos(th2)*m3*rc3^2*sin(th2) 
-cos(th3)*I3yy*sin(th3)-a2*rc3*sin(th3)*m3- sin(th3)*rc3^2*m3*cos(th3)+m2*cos(th2)*rc2*d0  
+m3*cos(th2)*a2*d1+sin(th2)*I2yy*cos(th2)+m3*cos(th2)*a2*d0-2*cos(th2)*I3xx*cos(th3)^2*sin(th2) 
+sin(th3)*cos(th3)*I3xx+sin(th2)*I3xx*cos(th2)+2*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)^2 
-2*I3xx*cos(th3)*sin(th3)*cos(th2)^2+2*sin(th2)*I3yy*cos(th3)^2*cos(th2) 
+2*sin(th3)*I3yy*cos(th3)*cos(th2)^2+m3*cos(th3)*cos(th2)*rc3*d1- m3*sin(th3)*sin(th2)*rc3*d0 
+2*sin(th3)*m3*rc3*cos(th2)^2*a2+2*sin(th2)*m3*rc3^2*cos(th3)^2*cos(th2)-cos(th2)*I3yy*sin(th2)) 
 
Bw0(2,1)= -sin(th1)*cos(th1)*(m3*rc3^2-I3xx-I2yy-2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2 
-2*cos(th2)*sin(th3)*m3*rc3^2*cos(th3)*sin(th2)+2*m3*rc3*cos(th3)*a2*cos(th2)^2 
-2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2)+2*cos(th2)*I3xx*cos(th3)*sin(th3)*sin(th2) 
+2*m3*rc3^2*cos(th2)^2*cos(th3)^2+I2yy*cos(th2)^2-I2xx*cos(th2)^2+I3xx*cos(th2)^2 
-I3yy*cos(th2)^2+cos(th3)^2*I3xx-cos(th3)^2*I3yy+2*I3yy*cos(th3)^2*cos(th2)^2+m3*a2^2*cos(th2)^2 
-m3*rc3^2*cos(th2)^2-cos(th3)^2*rc3^2*m3+m2*rc2^2*cos(th2)^2-2*I3xx*cos(th3)^2*cos(th2)^2 
-I1xx+I1zz+I2zz+I3zz) 
 
Bw0(2,2)= ¼*I2xx*cos(2*th2)- ¼*I2yy*cos(2*th2)+1/4*I3xx+1/4*I2yy+1/4*I3yy+1/4*I2xx 
+1/4*I3xx*cos(2*th3+2*th2)-1/4*I3yy*cos(2*th3+2*th2)+2*m3*rc3*d1*sin(th3+th2) 
-1/4*m3*rc3^2*cos(2*th3+2*th2)+3/4*m3*rc3^2+2*rc1*m1*d0+m3*d1^2+m2*d1^2 
+3/4*m2*rc2^2+m3*d0^2+m2*d0^2+1/2*I1xx+1/2*I1zz+1/2*I2zz+1/2*I3zz+3/2*cos(th3)*m3*rc3*a2 
+2*m3*d0*d1+2*m2*d0*d1+2*sin(th2)*m3*d0*a2+2*sin(th2)*m3*d1*a2+2*sin(th2)*rc2*m2*d1 
+m1*d0^2+m1*rc1^2+1/4*m3*rc3*a2*cos(th3+2*th1)+2*m3*rc3*d0*sin(th3+th2)+I0yy 
+1/4*m3*rc3*a2*cos(th3+2*th2-2*th1)+1/4*m3*rc3*a2*cos(th3+2*th2+2*th1) 
+1/4*m3*rc3*a2*cos(th3-2*th1)+m0*rc0^2+3/4*m3*a2^2-1/4*m3*a2^2*cos(2*th2) 
-1/2*m3*rc3*a2*cos(2*th2+th3)-1/4*m2*rc2^2*cos(2*th2)- ¼*I3xx*cos(2*th1) 
+1/4*m3*rc3^2*cos(2*th1)-1/4*I3yy*cos(2*th1)-1/4*I2yy*cos(2*th1) 
+1/8*I2yy*cos(-2*th1+2*th2)+1/8*I2yy*cos(2*th1+2*th2)-1/4*I2xx*cos(2*th1)+2*sin(th2)*rc2*m2*d0 
-1/8*I2xx*cos(-2*th1+2*th2)- 1/8*I2xx*cos(2*th1+2*th2)+1/4*m2*rc2^2*cos(2*th1) 
+1/8*m2*rc2^2*cos(-2*th1+2*th2)+1/8*m2*rc2^2*cos(2*th1+2*th2) +1/4*m3*a2^2*cos(2*th1) 
+1/8*m3*a2^2*cos(-2*th1+2*th2)+1/8*m3*a2^2*cos(2*th1+2*th2) 
+1/8*m3*rc3^2*cos(2*th2-2*th1+2*th3)+1/8*m3*rc3^2*cos(2*th2+2*th1+2*th3) 
+1/8*I3yy*cos(2*th2-2*th1+2*th3)+1/8*I3yy*cos(2*th2+2*th1+2*th3) 
-1/8*I3xx*cos(2*th2-2*th1+2*th3)-1/8*I3xx*cos(2*th2+2*th1+2*th3)- ½*I1xx*cos(2*th1) 
+1/2*I3zz*cos(2*th1)+1/2*I1zz*cos(2*th1)+1/2*I2zz*cos(2*th1) 
 
 
Bw0(2,3)= sin(th1)*(cos(th2)*I3yy*sin(th2)-I3xx*sin(th3)*cos(th3)-sin(th2)*I3xx*cos(th2) 
-sin(th2)*I2yy*cos(th2)+2*cos(th2)*I3xx*cos(th3)^2*sin(th2)-m3*cos(th2)*a2*d1 
-m3*cos(th3)*cos(th2)*rc3*d0+m3*sin(th3)*rc3*a2-sin(th2)*m3*cos(th2)*a2^2 
-2*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)^2+cos(th3)*I3yy*sin(th3)-m3*cos(th2)*a2*d0 
-2*sin(th2)*m3*rc3^2*cos(th3)^2*cos(th2)-2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2 
-2*sin(th2)*I3yy*cos(th3)^2*cos(th2)-m3*cos(th3)*cos(th2)*rc3*d1-m2*cos(th2)*rc2*d1 
-m2*cos(th2)*rc2*d0+2*I3xx*cos(th3)*sin(th3)*cos(th2)^2-2*sin(th3)*I3yy*cos(th3)*cos(th2)^2 
+m3*sin(th3)*sin(th2)*rc3*d0+cos(th3)*m3*rc3^2*sin(th3)+m3*sin(th3)*sin(th2)*rc3*d1 
+cos(th2)*I2xx*sin(th2)-2*sin(th3)*m3*rc3*cos(th2)^2*a2+cos(th2)*m3*rc3^2*sin(th2) 
-sin(th2)*m2*cos(th2)*rc2^2) 
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Bw0(3,1)= -cos(th1)*(cos(th2)*rc2*m2*d0+cos(th2)*m3*d0*a2-sin(th3)*m3*rc3^2*cos(th3) 
-sin(th3)*m3*rc3*a2+cos(th2)*cos(th3)*m3*rc3*d1-sin(th2)*sin(th3)*m3*rc3*d0 
- sin(th2)*sin(th3)*m3*rc3*d1+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2 
+cos(th2)*cos(th3)*m3*rc3*d0+2*cos(th2)*I3yy*cos(th3)^2*sin(th2)+cos(th2)*rc2*m2*d1 
+2*m3*sin(th3)*cos(th2)^2*rc3*a2+2*cos(th2)*m3*rc3^2*cos(th3)^2*sin(th2) 
+2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2+2*cos(th3)*I3yy*sin(th3)*cos(th2)^2 
-2*sin(th2)*I3xx*cos(th3)^2*cos(th2)+cos(th2)*m3*d1*a2-2*I3xx*sin(th3)*cos(th3)*cos(th2)^2 
-sin(th2)*m3*rc3^2*cos(th2)+cos(th2)*m2*sin(th2)*rc2^2+cos(th2)*m3*sin(th2)*a2^2 
-sin(th2)*I3yy*cos(th2)+I3xx*cos(th3)*sin(th3)- sin(th3)*I3yy*cos(th3)+cos(th2)*I3xx*sin(th2) 
+cos(th2)*I2yy*sin(th2)-sin(th2)*I2xx*cos(th2)) 
 
Bw0(3,2)= -sin(th1)*(I3xx*sin(th3)*cos(th3) �cos(th2)*I2xx*sin(th2)+sin(th2)*I3xx*cos(th2) 
+sin(th2)*I2yy*cos(th2)-cos(th2)*I3yy*sin(th2)-cos(th3)*I3yy*sin(th3)-m3*sin(th3)*sin(th2)*rc3*d1 
-m3*sin(th3)*sin(th2)*rc3*d0+2*sin(th3)*m3*rc3*cos(th2)^2*a2- cos(th3)*m3*rc3^2*sin(th3) 
+2*sin(th3)*I3yy*cos(th3)*cos(th2)^2+2*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)^2+m2*cos(th2)*rc2*d1 
+m2*cos(th2)*rc2*d0+m3*cos(th3)*cos(th2)*rc3*d0+m3*cos(th2)*a2*d0+m3*cos(th2)*a2*d1 
-m3*sin(th3)*rc3*a2-2*cos(th2)*I3xx*cos(th3)^2*sin(th2)+sin(th2)*m3*cos(th2)*a2^2 
+sin(th2)*m2*cos(th2)*rc2^2+2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2- cos(th2)*m3*rc3^2*sin(th2) 
+m3*cos(th3)*cos(th2)*rc3*d1+2*sin(th2)*m3*rc3^2*cos(th3)^2*cos(th2)+2*sin(th2)*I3yy*cos(th3)^2*c
os(th2)-2*I3xx*cos(th3)*sin(th3)*cos(th2)^2) 
 
Bw0(3,3)= I1yy+I0zz+1/2*m3*rc3^2-1/2*I3xx*cos(2*th3+2*th2)+1/2*I3xx+1/2*I2yy 
+1/2*I3yy+1/2*I2xx+cos(th3)*m3*rc3*a2+1/2*I2yy*cos(2*th2)+1/2*m3*a2^2+1/2*m3*a2^2*cos(2*th2)
+1/2*I3yy*cos(2*th3+2*th2)+1/2*m2*rc2^2-
1/2*I2xx*cos(2*th2)+m3*rc3*a2*cos(2*th2+th3)+1/2*m2*rc2^2*cos(2*th2)+1/2*m3*rc3^2*cos(2*th3+2
*th2)                                                                                                                                                       (A-21) 
 

 
Cross Coupling Interaction Torque Effects 

 
NCMτ0(1,1)= 2*sin(th1)*cos(th1)*(I3zz+I2zz+cos(th2)^2*I2yy+cos(th3)^2*I3xx-cos(th2)^2*I2xx-I3xx 
-I2yy+cos(th2)^2*I3xx-cos(th2)^2*I3yy+rc3^2*m3+2*cos(th2)^2*cos(th3)^2*rc3^2*m3 
-2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2)+2*cos(th3)^2*cos(th2)^2*I3yy 
-2*cos(th2)^2*cos(th3)^2*I3xx+a2^2*cos(th2)^2*m3+rc2^2*cos(th2)^2*m2-cos(th2)^2*rc3^2*m3 
-cos(th3)^2*I3yy+2*cos(th2)*cos(th3)*I3xx*sin(th3)*sin(th2)- 2*a2*cos(th2)*rc3*m3*sin(th3)*sin(th2) 
+2*a2*cos(th2)^2*rc3*m3*cos(th3)-2*cos(th2)*cos(th3)*rc3^2*m3*sin(th3)*sin(th2) 
-cos(th3)^2*rc3^2*m3-I1xx+I1zz) 
 
NCMτ0(1,2)= -1/2*I3xx*cos(2*th3+2*th2)-I2zz*cos(2*th1)+I1xx*cos(2*th1) 
+1/4*I3xx*cos(2*th2-2*th1+2*th3)+1/4*I3xx*cos(2*th2+2*th1+2*th3)-1/2*a2*rc3*m3*cos(th3-2*th1) 
-1/2*a2*rc3*m3*cos(th3+2*th1)-1/4*rc2^2*m2*cos(-2*th1+2*th2)-1/4*rc2^2*m2*cos(2*th1+2*th2) 
-1/2*rc2^2*m2*cos(2*th1)+1/2*I3yy*cos(2*th3+2*th2)-1/4*a2^2*m3*cos(-2*th1+2*th2) 
-1/2*a2^2*m3*cos(2*th1)+1/2*I2yy*cos(2*th1)+1/2*I3xx+1/2*I2yy+1/2*I3yy+1/2*I2xx+1/2*a2^2*m3 
+1/2*a2^2*m3*cos(2*th2)+a2*rc3*m3*cos(th3)+1/2*rc3^2*m3+1/2*rc2^2*m2 
+1/2*rc2^2*m2*cos(2*th2)-1/4*a2^2*m3*cos(2*th1+2*th2)+a2*rc3*m3*cos(2*th2+th3) 
-1/4*I2yy*cos(2*th1+2*th2)-1/4*I2yy*cos(-2*th1+2*th2)+1/4*I2xx*cos(2*th1+2*th2) 
+1/4*I2xx*cos(-2*th1+2*th2)+1/2*I3xx*cos(2*th1)+1/2*I2xx*cos(2*th1)-I1zz*cos(2*th1) 
-1/4*rc3^2*m3*cos(2*th2-2*th1+2*th3)-1/4*rc3^2*m3*cos(2*th2+2*th1+2*th3) 
-1/2*rc3^2*m3*cos(2*th1)+I1yy+1/2*I3yy*cos(2*th1)+1/2*I2yy*cos(2*th2) 
-1/2*a2*rc3*m3*cos(th3+2*th2-2*th1)-1/2*a2*rc3*m3*cos(th3+2*th2+2*th1) 
-1/4*I3yy*cos(2*th2+2*th1+2*th3)-1/4*I3yy*cos(2*th2-2*th1+2*th3)-1/2*I2xx*cos(2*th2) 



 

 228

-I3zz*cos(2*th1)+1/2*rc3^2*m3*cos(2*th3+2*th2) 
 
NCMτ0(1,3)= -1/2*I3yy*cos(2*th3+2*th2+th1)+1/2*I3yy*cos(2*th3+2*th2-th1) 
-1/2*I3xx*cos(2*th3+2*th2-th1)+1/2*I3xx*cos(2*th3+2*th2+th1)-m3*rc3*d1*sin(-th1+th3+th2) 
+m3*rc3*d1*sin(th1+th3+th2)+1/2*rc3^2*m3*cos(2*th3+2*th2-th1) 
- 1/2*rc3^2*m3*cos(2*th3+2*th2+th1) -1/2*m2*rc2^2*cos(2*th2+th1)+1/2*m2*rc2^2*cos(2*th2-th1) 
+m3*rc3*a2*cos(2*th2+th3-th1)-m3*rc3*a2*cos(2*th2+th3+th1)-1/2*m3*a2^2*cos(2*th2+th1) 
+1/2*m3*a2^2*cos(2*th2-th1)+1/2*I2xx*cos(2*th2+th1)-1/2*I2xx*cos(2*th2-th1) 
-1/2*I2yy*cos(2*th2+th1)+1/2*I2yy*cos(2*th2-th1)-m3*rc3*d0*sin(-th1+th3+th2) 
+m3*rc3*d0*sin(th1+th3+th2)+m3*a2*d0*sin(th2+th1)-m3*a2*d0*sin(th2- th1) 
+m2*rc2*d1*sin(th2+th1)-m2*rc2*d1*sin(th2-th1)+m2*rc2*d0*sin(th2+th1)-m2*rc2*d0*sin(th2-th1) 
-m3*a2*d1*sin(th2-th1)+m3*a2*d1*sin(th2+th1) 
 
NCMτ0(1,4)= 1/2*I3yy*sin(2*th3+2*th2)+1/4*I3yy*sin(2*th2-2*th1+2*th3) 
+1/4*I3yy*sin(2*th2+2*th1+2*th3)-1/2*I2xx*sin(2*th2)-1/4*I2xx*sin(2*th1+2*th2) 
-1/4*I2xx*sin(-2*th1+2*th2)+2*m3*rc3*d0*cos(th3+th2)+1/4*I2yy*sin(2*th1+2*th2) 
+2*m3*rc3*d1*cos(th3+th2)+1/4*m2*rc2^2*sin(2*th1+2*th2)+1/4*m2*rc2^2*sin(-2*th1+2*th2) 
+1/2*m2*rc2^2*sin(2*th2)+m3*rc3*a2*sin(2*th2+th3)+1/4*I2yy*sin(-2*th1+2*th2) 
+1/2*I2yy*sin(2*th2)+1/2*m3*rc3*a2*sin(th3+2*th2-2*th1)+1/2*m3*rc3*a2*sin(th3+2*th2+2*th1) 
+1/2*m3*rc3^2*sin(2*th3+2*th2)+1/4*m3*rc3^2*sin(2*th2+2*th1+2*th3) 
+1/4*m3*rc3^2*sin(2*th2-2*th1+2*th3)+1/4*m3*a2^2*sin(2*th1+2*th2) 
+1/4*m3*a2^2*sin(-2*th1+2*th2)+1/2*m3*a2^2*sin(2*th2)-1/4*I3xx*sin(2*th2-2*th1+2*th3) 
-1/4*I3xx*sin(2*th2+2*th1+2*th3)- 1/2*I3xx*sin(2*th3+2*th2)+2*m2*cos(th2)*rc2*d0 
+2*m3*cos(th2)*a2*d0+2*m3*cos(th2)*a2*d1+2*m2*cos(th2)*rc2*d1 
 
NCMτ0(1,5)= -1/4*I2xx*cos(-2*th1+2*th2)+1/4*m2*rc2^2*cos(-2*th1+2*th2) 
-1/4*m3*a2^2*cos(2*th1+2*th2)+1/4*m3*a2^2*cos(-2*th1+2*th2)- 1/4*m2*rc2^2*cos(2*th1+2*th2) 
+1/4*I2xx*cos(2*th1+2*th2)+1/2*m3*rc3*a2*cos(th3+2*th2-2*th1) 
- 1/2*m3*rc3*a2*cos(th3+2*th2+2*th1)-1/4*I2yy*cos(2*th1+2*th2)+1/4*I2yy*cos(-2*th1+2*th2) 
-1/4*I3yy*cos(2*th2+2*th1+2*th3)+1/4*I3yy*cos(2*th2-2*th1+2*th3) 
+1/4*I3xx*cos(2*th2+2*th1+2*th3)-1/4*I3xx*cos(2*th2-2*th1+2*th3) 
-1/4*m3*rc3^2*cos(2*th2+2*th1+2*th3)+1/4*m3*rc3^2*cos(2*th2-2*th1+2*th3) 
 
NCMτ0(1,6)= -cos(th1)*(-2*m2*rc2^2-I3xx-I2yy+I3yy+I2xx-I3zz- I2zz+2*m2*rc2^2*cos(th2)^2 
+4*I3yy*cos(th3)^2*cos(th2)^2-4*I3xx*cos(th3)^2*cos(th2)^2+2*m3*a2^2*cos(th2)^2 
-2*m3*rc3^2*cos(th2)^2-2*cos(th3)^2*rc3^2*m3-4*cos(th2)*sin(th3)*m3*rc3^2*cos(th3)*sin(th2) 
-4*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2-2*m3*cos(th3)*sin(th2)*rc3*d1 
-4*cos(th2)*cos(th3)*I3yy*sin(th3)*sin(th2)-2*m3*sin(th3)*cos(th2)*rc3*d1-2*m2*sin(th2)*rc2*d1 
-2*m3*sin(th2)*a2*d1-4*a2*rc3*m3*cos(th3)+2*I2yy*cos(th2)^2 
+4*cos(th2)*cos(th3)*I3xx*sin(th3)*sin(th2) -2*m2*sin(th2)*rc2*d0-2*m3*sin(th2)*a2*d0 
+4*m3*rc3^2*cos(th2)^2*cos(th3)^2+4*cos(th3)*m3*rc3*a2*cos(th2)^2 
-2*m3*cos(th3)*sin(th2)*rc3*d0-2*m3*sin(th3)*cos(th2)*rc3*d0-2*I2xx*cos(th2)^2+2*cos(th3)^2*I3xx 
-2*cos(th3)^2*I3yy+2*I3xx*cos(th2)^2-2*I3yy*cos(th2)^2-2*m3*a2^2) 
 
NCMτ0(1,7)= 1/2*I3yy*sin(2*th3+2*th2)+1/4*I3yy*sin(2*th2-2*th1+2*th3) 
+1/4*I3yy*sin(2*th2+2*th1+2*th3)-3/2*sin(th3)*m3*rc3*a2-1/2*I3xx*sin(2*th3+2*th2) 
+1/4*m3*rc3*a2*sin(th3+2*th1)+1/4*m3*rc3*a2*sin(th3-2*th1)-1/4*I3xx*sin(2*th2+2*th1+2*th3) 
-1/4*I3xx*sin(2*th2-2*th1+2*th3)+1/2*m3*rc3^2*sin(2*th3+2*th2) 
+1/4*m3*rc3^2*sin(2*th2+2*th1+2*th3)+1/4*m3*rc3^2*sin(2*th2-2*th1+2*th3) 
+1/2*m3*rc3*a2*sin(2*th2+th3)+1/4*m3*rc3*a2*sin(th3+2*th2-2*th1) 
+1/4*m3*rc3*a2*sin(th3+2*th2+2*th1)+2*m3*rc3*d0*cos(th3+th2)+2*m3*rc3*d1*cos(th3+th2) 
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NCMτ0(1,8)= -1/4*m3*rc3*a2*cos(th3+2*th1)+1/4*m3*rc3*a2*cos(th3-2*th1) 
-1/4*m3*rc3^2*cos(2*th2+2*th1+2*th3)+1/4*m3*rc3^2*cos(2*th2-2*th1+2*th3) 
+1/4*I3xx*cos(2*th2+2*th1+2*th3)-1/4*I3xx*cos(2*th2-2*th1+2*th3) 
-1/4*m3*rc3*a2*cos(th3+2*th2+2*th1)+1/4*I3yy*cos(2*th2-2*th1+2*th3) 
+1/4*m3*rc3*a2*cos(th3+2*th2-2*th1)-1/4*I3yy*cos(2*th2+2*th1+2*th3) 
 
NCMτ0(1,9)= 1/2*I3xx*cos(2*th3+2*th2+th1)+1/2*I3xx*cos(2*th3+2*th2-th1) 
-1/2*m3*rc3^2*cos(2*th3+2*th2-th1)- 1/2*m3*rc3^2*cos(2*th3+2*th2+th1) 
+m3*rc3*d0*sin(th1+th3+th2)+m3*rc3*d0*sin(-th1+th3+th2)-1/2*m3*rc3*a2*cos(2*th2+th3+th1) 
-1/2*m3*rc3*a2*cos(2*th2+th3-th1)+m3*rc3*d1*sin(-th1+th3+th2)+m3*rc3*d1*sin(th1+th3+th2) 
+cos(th1)*m3*rc3^2-1/2*I3yy*cos(2*th3+2*th2+th1)-1/2*I3yy*cos(2*th3+2*th2- th1) 
+1/2*m3*rc3*a2*cos(th3-th1)+1/2*m3*rc3*a2*cos(th3+th1)+cos(th1)*I3zz 
 
NCMτ0(2,1)= -4*I3yy*cos(th3)^2*cos(th2)^2*cos(th1)^2-I1xx+2*I1xx*cos(th1)^2+2*I2yy*cos(th1)^2 
-I3xx-I2yy-I3yy-I2xx-I1yy+I1zz-2*cos(th2)^2*cos(th1)^2*I2yy+2*cos(th2)^2*I2xx*cos(th1)^2 
-2*m3*rc3^2*cos(th1)^2+2*I3yy*cos(th2)^2*cos(th1)^2+2*I3xx*cos(th1)^2-2*cos(th1)^2*I3zz 
-2*I1zz*cos(th1)^2-2*I2zz*cos(th1)^2-4*I3xx*cos(th3)*sin(th2)*sin(th3)*cos(th2)*cos(th1)^2 
-4*m3*rc3*cos(th3)*cos(th2)^2*cos(th1)^2*a2+4*m3*rc3*sin(th3)*sin(th2)*cos(th1)^2*a2*cos(th2) 
+4*m3*rc3^2*cos(th3)*sin(th2)*sin(th3)*cos(th2)*cos(th1)^2 
-4*m3*rc3^2*cos(th3)^2*cos(th2)^2*cos(th1)^2+4*I3yy*cos(th3)*sin(th2)*sin(th3)*cos(th2)*cos(th1)^2 
+4*I3xx*cos(th3)^2*cos(th2)^2*cos(th1)^2-2*m2*cos(th2)^2*cos(th1)^2*rc2^2 
+2*m3*rc3^2*cos(th1)^2*cos(th2)^2+2*m3*rc3^2*cos(th1)^2*cos(th3)^2 
-2*m3*cos(th1)^2*a2^2*cos(th2)^2+2*I3yy*cos(th3)^2*cos(th1)^2-2*I3xx*cos(th3)^2*cos(th1)^2 
-2*I3xx*cos(th2)^2*cos(th1)^2+I3zz+I2zz 
 
NCMτ0(2,2)= 2*sin(th1)*cos(th1)*(-m3*rc3^2-2*cos(th2)^2*cos(th3)^2*rc3^2*m3+I1xx+I3xx+I2yy 
-I1zz+cos(th3)^2*I3yy-cos(th3)^2*I3xx-I3zz-cos(th2)^2*I2yy- I2zz+cos(th2)^2*I2xx 
+2*cos(th2)*a2*sin(th2)*sin(th3)*rc3*m3+2*cos(th2)*sin(th3)*sin(th2)*cos(th3)*rc3^2*m3 
-cos(th2)^2*I3xx-2*a2*cos(th2)^2*cos(th3)*rc3*m3-2*cos(th2)*sin(th3)*sin(th2)*cos(th3)*I3xx 
+2*cos(th2)*sin(th3)*sin(th2)*cos(th3)*I3yy+cos(th2)^2*I3yy- a2^2*cos(th2)^2*m3 
+2*cos(th2)^2*cos(th3)^2*I3xx-rc2^2*cos(th2)^2*m2+cos(th2)^2*rc3^2*m3 
-2*cos(th2)^2*cos(th3)^2*I3yy+cos(th3)^2*rc3^2*m3) 
 
NCMτ0(2,3)= 1/2*I2xx*sin(2*th2-th1)-1/2*I2yy*sin(2*th2+th1)-1/2*m2*rc2^2*sin(2*th2-th1) 
-1/2*m2*rc2^2*sin(2*th2+th1)+1/2*I2xx*sin(2*th2+th1)-1/2*I2yy*sin(2*th2-th1) 
-m2*rc2*d0*cos(th2-th1)-m2*rc2*d0*cos(th2+th1)-m3*a2*d0*cos(th2-th1)-m3*a2*d0*cos(th2+th1) 
-m3*rc3*d0*cos(th1+th3+th2)-m3*rc3*d0*cos(-th1+th3+th2)-m3*a2*d1*cos(th2-th1) 
-m3*a2*d1*cos(th2+th1)-m3*rc3*d1*cos(-th1+th3+th2)-m3*rc3*d1*cos(th1+th3+th2) 
-1/2*m3*a2^2*sin(2*th2+th1)-1/2*m3*a2^2*sin(2*th2-th1)-m3*rc3*a2*sin(2*th2+th3+th1) 
-m3*rc3*a2*sin(2*th2+th3-th1)-m2*rc2*d1*cos(th2-th1)- m2*rc2*d1*cos(th2+th1) 
+1/2*I3xx*sin(2*th3+2*th2-th1)+1/2*I3xx*sin(2*th3+2*th2+th1)-1/2*I3yy*sin(2*th3+2*th2-th1) 
-1/2*I3yy*sin(2*th3+2*th2+th1)-1/2*m3*rc3^2*sin(2*th3+2*th2-th1) 
-1/2*m3*rc3^2*sin(2*th3+2*th2+th1) 
 
NCMτ0(2,4)= -1/4*I3xx*cos(2*th2-2*th1+2*th3)+1/4*I3xx*cos(2*th2+2*th1+2*th3) 
-1/4*m3*rc3^2*cos(2*th2+2*th1+2*th3)-1/4*I3yy*cos(2*th2+2*th1+2*th3) 
+1/4*I3yy*cos(2*th2-2*th1+2*th3)+1/4*m3*rc3^2*cos(2*th2-2*th1+2*th3) 
-1/4*m2*rc2^2*cos(2*th1+2*th2)+1/4*m2*rc2^2*cos(-2*th1+2*th2) 
+1/2*m3*rc3*a2*cos(th3+2*th2-2*th1)-1/2*m3*rc3*a2*cos(th3+2*th2+2*th1) 
-1/4*I2yy*cos(2*th1+2*th2)+1/4*I2yy*cos(-2*th1+2*th2)- 1/4*m3*a2^2*cos(2*th1+2*th2) 
+1/4*m3*a2^2*cos(-2*th1+2*th2)+1/4*I2xx*cos(2*th1+2*th2)-1/4*I2xx*cos(-2*th1+2*th2) 
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NCMτ0(2,5)= -1/2*I3xx*sin(2*th3+2*th2)+1/4*I3xx*sin(2*th2+2*th1+2*th3) 
+1/4*I3xx*sin(2*th2-2*th1+2*th3)-1/4*I3yy*sin(2*th2-2*th1+2*th3)-1/4*I3yy*sin(2*th2+2*th1+2*th3) 
-1/4*m3*rc3^2*sin(2*th2-2*th1+2*th3)-1/4*m3*rc3^2*sin(2*th2+2*th1+2*th3)- 1/2*I2xx*sin(2*th2) 
+1/2*m3*rc3^2*sin(2*th3+2*th2)+1/2*I2yy*sin(2*th2)+1/2*I3yy*sin(2*th3+2*th2) 
-1/4*m3*a2^2*sin(-2*th1+2*th2)+1/2*m3*a2^2*sin(2*th2)-1/4*m3*a2^2*sin(2*th1+2*th2) 
-1/4*m2*rc2^2*sin(2*th1+2*th2)-1/4*m2*rc2^2*sin(-2*th1+2*th2)+1/2*m2*rc2^2*sin(2*th2) 
+2*m3*rc3*d1*cos(th3+th2)+2*m3*rc3*d0*cos(th3+th2)+1/4*I2xx*sin(2*th1+2*th2) 
+1/4*I2xx*sin(-2*th1+2*th2)+m3*rc3*a2*sin(2*th2+th3)-1/4*I2yy*sin(2*th1+2*th2) 
-1/4*I2yy*sin(-2*th1+2*th2)+2*m2*cos(th2)*rc2*d1+2*m2*cos(th2)*rc2*d0 
-1/2*m3*rc3*a2*sin(th3+2*th2-2*th1)- 1/2*m3*rc3*a2*sin(th3+2*th2+2*th1)+2*m3*cos(th2)*a2*d1 
+2*m3*cos(th2)*a2*d0 
 
NCMτ0(2,6)= -sin(th1)*(-2*cos(th3)^2*rc3^2*m3+2*m2*rc2^2*cos(th2)^2-2*m3*rc3^2*cos(th2)^2 
-4*I3xx*cos(th3)^2*cos(th2)^2+4*I3yy*cos(th3)^2*cos(th2)^2+2*m3*a2^2*cos(th2)^2-
2*a2^2*m3+I2xx-I3xx+I3yy-I2yy-I2zz-I3zz+2*cos(th3)^2*I3xx-2*cos(th3)^2*I3yy+2*I2yy*cos(th2)^2 
-2*I3yy*cos(th2)^2+2*I3xx*cos(th2)^2-2*I2xx*cos(th2)^2-2*m2*sin(th2)*rc2*d1-2*m2*rc2^2 
-2*m3*sin(th2)*a2*d1-2*m3*sin(th3)*cos(th2)*rc3*d0-2*m3*cos(th3)*sin(th2)*rc3*d0 
-4*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2-2*m3*sin(th3)*cos(th2)*rc3*d1 
+4*cos(th3)*m3*rc3*a2*cos(th2)^2-2*m3*cos(th3)*sin(th2)*rc3*d1-2*m2*sin(th2)*rc2*d0 
+4*m3*rc3^2*cos(th2)^2*cos(th3)^2-2*m3*sin(th2)*a2*d0 
-4*cos(th2)*sin(th3)*m3*rc3^2*cos(th3)*sin(th2) 
-4*cos(th2)*cos(th3)*I3yy*sin(th3)*sin(th2)+4*cos(th2)*cos(th3)*I3xx*sin(th3)*sin(th2) 
-4*a2*rc3*m3*cos(th3)) 
 
NCMτ0(2,7)= -1/4*m3*rc3*a2*cos(th3+2*th1)+1/4*m3*rc3*a2*cos(-th3+2*th1) 
+1/4*I3yy*cos(-2*th2+2*th1-2*th3)-1/4*I3xx*cos(-2*th2+2*th1-2*th3) 
-1/4*m3*rc3*a2*cos(th3+2*th2+2*th1)+1/4*I3xx*cos(2*th2+2*th1+2*th3) 
-1/4*I3yy*cos(2*th2+2*th1+2*th3)+1/4*m3*rc3^2*cos(-2*th2+2*th1-2*th3) 
-1/4*m3*rc3^2*cos(2*th2+2*th1+2*th3)+1/4*m3*rc3*a2*cos(-th3-2*th2+2*th1) 
 
NCMτ0(2,8)= 2*m3*rc3*d0*cos(th3+th2)-1/2*I3xx*sin(2*th3+2*th2) 
+1/4*m3*rc3^2*sin(-2*th2+2*th1-2*th3)-1/4*m3*rc3^2*sin(2*th2+2*th1+2*th3) 
-3/2*m3*sin(th3)*rc3*a2+1/2*m3*rc3^2*sin(2*th3+2*th2) +1/2*I3yy*sin(2*th3+2*th2) 
+2*m3*rc3*d1*cos(th3+th2)-1/4*m3*rc3*a2*sin(th3+2*th2+2*th1) 
+1/4*m3*rc3*a2*sin(-th3-2*th2+2*th1)-1/4*I3yy*sin(2*th2+2*th1+2*th3) 
+1/4*I3yy*sin(-2*th2+2*th1-2*th3)+1/2*m3*rc3*a2*sin(th3+2*th2) 
-1/4*m3*rc3*a2*sin(th3+2*th1)+1/4*m3*rc3*a2*sin(-th3+2*th1)+1/4*I3xx*sin(2*th2+2*th1+2*th3) 
-1/4*I3xx*sin(-2*th2+2*th1-2*th3) 
 
NCMτ0(2,9)= m3*rc3*d0*cos(-th2+th1-th3)-m3*rc3*d0*cos(th2+th1+th3) 
-m3*rc3*d1*cos(th2+th1+th3)+m3*rc3*d1*cos(-th2+th1- th3)+sin(th1)*I3zz+sin(th1)*m3*rc3^2 
+1/2*m3*rc3*a2*sin(th1+th3)+1/2*m3*rc3*a2*sin(th1-th3)-1/2*m3*rc3^2*sin(2*th2+th1+2*th3) 
-1/2*m3*rc3^2*sin(-2*th2+th1-2*th3)+1/2*I3xx*sin(2*th2+th1+2*th3)+1/2*I3xx*sin(-2*th2+th1-2*th3) 
-1/2*I3yy*sin(2*th2+th1+2*th3)-1/2*I3yy*sin(-2*th2+th1-2*th3)-1/2*m3*rc3*a2*sin(2*th2+th1+th3) 
-1/2*m3*rc3*a2*sin(-2*th2+th1-th3) 
 
NCMτ0(3,1)=0 
 
NCMτ0(3,2)=0 
 
NCMτ0(3,3)=0 
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NCMτ0(3,4)= cos(th1)*(2*m3*rc3^2*cos(th3)^2+2*m3*rc3^2*cos(th2)^2-2*m2*cos(th2)^2*rc2^2 
-4*I3yy*cos(th3)^2*cos(th2)^2+4*I3xx*cos(th3)^2*cos(th2)^2-2*m3*cos(th2)^2*a2^2-2*m3*rc3^2 
-2*I2yy*cos(th2)^2+2*I2xx*cos(th2)^2-2*I3xx*cos(th2)^2+2*I3yy*cos(th2)^2+2*I3yy*cos(th3)^2 
-2*I3xx*cos(th3)^2-4*sin(th2)*sin(th3)*I3xx*cos(th3)*cos(th2) 
+4*sin(th2)*sin(th3)*I3yy*cos(th3)*cos(th2)- 4*cos(th3)*m3*rc3*cos(th2)^2*a2 
+4*sin(th2)*sin(th3)*m3*rc3*cos(th2)*a2+4*sin(th2)*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)+I3xx-I3yy 
-4*m3*rc3^2*cos(th3)^2*cos(th2)^2-I3zz-I2zz+I2yy-I2xx) 
 
NCMτ0(3,5)= -sin(th1)*(2*m3*rc3^2-I3xx+I3yy+I3zz-2*m3*rc3^2*cos(th3)^2 
+4*I3yy*cos(th3)^2*cos(th2)^2+2*m3*cos(th2)^2*a2^2-4*I3xx*cos(th3)^2*cos(th2)^2 
-4*sin(th2)*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)+4*sin(th2)*cos(th3)*I3xx*sin(th3)*cos(th2) 
+2*I3xx*cos(th2)^2-4*sin(th2)*cos(th3)*I3yy*sin(th3)*cos(th2)- 4*sin(th2)*sin(th3)*m3*rc3*cos(th2)*a2 
+4*cos(th3)*m3*rc3*cos(th2)^2*a2-2*I2xx*cos(th2)^2-2*I3yy*cos(th3)^2-2*I3yy*cos(th2)^2 
+2*I3xx*cos(th3)^2+2*I2yy*cos(th2)^2+4*m3*rc3^2*cos(th3)^2*cos(th2)^2+2*m2*cos(th2)^2*rc2^2 
-2*m3*rc3^2*cos(th2)^2+I2zz-I2yy+I2xx) 
 
NCMτ0(3,6)= I3xx*sin(2*th3+2*th2)-m3*rc3^2*sin(2*th3+2*th2)-I3yy*sin(2*th3+2*th2) 
-2*m3*rc3*a2*sin(th3+2*th2)+I2xx*sin(2*th2)-m3*a2^2*sin(2*th2)-I2yy*sin(2*th2) 
-m2*rc2^2*sin(2*th2) 
 
NCMτ0(3,7)= -I3zz*cos(th1)-1/2*m3*rc3*a2*cos(2*th2+th1+th3)-m3*rc3^2*cos(th1) 
-1/2*m3*rc3^2*cos(-2*th2+th1-2*th3)-1/2*m3*rc3^2*cos(2*th2+th1+2*th3) 
-1/2*m3*rc3*a2*cos(-2*th2+th1-th3)-1/2*m3*rc3*a2*cos(th1-th3)- 1/2*m3*rc3*a2*cos(th1+th3) 
+1/2*I3xx*cos(-2*th2+th1-2*th3)+1/2*I3xx*cos(2*th2+th1+2*th3)-1/2*I3yy*cos(-2*th2+th1-2*th3) 
-1/2*I3yy*cos(2*th2+th1+2*th3) 
 
NCMτ0(3,8)= 1/2*I3xx*sin(-2*th2+th1-2*th3)-1/2*m3*rc3*a2*sin(2*th2+th1+th3) 
-1/2*m3*rc3*a2*sin(-2*th2+th1-th3)-1/2*m3*rc3*a2*sin(th1+th3)-1/2*m3*rc3*a2*sin(th1-th3) 
-I3zz*sin(th1)+1/2*I3xx*sin(2*th2+th1+2*th3)-1/2*I3yy*sin(2*th2+th1+2*th3) 
-1/2*I3yy*sin(-2*th2+th1-2*th3)-1/2*m3*rc3^2*sin(-2*th2+th1-2*th3) 
-1/2*m3*rc3^2*sin(2*th2+th1+2*th3)-m3*rc3^2*sin(th1) 
 
NCMτ0(3,9)= -m3*sin(th3)*rc3*a2-m3*rc3*a2*sin(th3+2*th2)+I3xx*sin(2*th3+2*th2) 
-m3*rc3^2*sin(2*th3+2*th2)-I3yy*sin(2*th3+2*th2)                                                                          (A-22) 
 
 
 

A.1.3. Joint Torque Effects 
 
 
 

Rigid Inertia Joint Torques 
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Rigid Coriolis Joint Torques 
 

NRτ(1,1)= -Ksin(2*th2)-I2yy*sin(2*th2)-E*sin(2*th3+2*th2)- 2*B*a2*sin(2*th2+th3) 
+I2xx*sin(2*th2)-I3yy*sin(2*th3+2*th2)+I3xx*sin(2*th3+2*th2) 
NRτ(1,2)= -B*sin(th3)*a2-E*sin(2*th3+2*th2)-B*a2*sin(2*th2+th3) -J*sin(2*th3+2*th2) 
NRτ(2,3)= -2*sin(th3)*B*a2 
NRτ(1,3)=NRτ(2,1)=NRτ(2,2)=NRτ(3,1)=NRτ(3,2)=NRτ(3,3)=0           (A-24) 
 

Rigid Centrifugal Joint Torques 
 
NRτ(2,1)= 1/2*(E+J)*sin(2*th3+2*th2)+1/2*(K-G)*sin(2*th2) +B*a2*sin(2*th2+th3) 
NRτ(2,3)= -sin(th3)*B*a2 
NRτ(3,1)= 1/2*(E+J)*sin(2*th3+2*th2) +1/2*sin(th3)*B*a2+1/2*B*a2*sin(2*th2+th3) 
NRτ(3,2)= sin(th3)*B*a2 
NCτ(1,1)=NRτ(1,2)=NRτ(1,3)=NRτ(2,2)=NRτ(3,3)=0                                                                          (A-25) 
 
 

Rigid Gravitational Joint Torques 
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Flexible Body Inertia Joint Torques  

 
Aτ(1,1)= -sin(th1)*(-B*sin(th3)*sin(th2)+cos(th2)*B*cos(th3)+A*cos(th2)) 
Aτ(1,2)= cos(th1)*(-B*sin(th3)*sin(th2)+cos(th2)*B*cos(th3)+A*cos(th2)) 
Aτ(1,3)=0 
Aτ(2,1)= -cos(th1)*(B*sin(th3)*cos(th2)+B*cos(th3)*sin(th2)+A*sin(th2)) 
Aτ(2,2)= -sin(th1)*(B*sin(th3)*cos(th2)+B*cos(th3)*sin(th2)+A*sin(th2)) 
Aτ(2,3)= B*cos(th2+th3)+A*cos(th2) 
Aτ(3,1)= -B*cos(th1)*(sin(th3)*cos(th2)+cos(th3)*sin(th2)) 
Aτ(3,2)= -B*sin(th1)*(sin(th3)*cos(th2)+cos(th3)*sin(th2)) 
Aτ(3,3)= B*cos(th2+th3)                                                                                                                       (A-27) 
 

Flexible Body Coriolis Joint Torques  
 

NRCτ(1,1)= (2*cos(th1)^2-1)*(2*I3yy*cos(th2)^2*cos(th3)^2-2*sin(th2)*cos(th3)*I3yy*sin(th3)*cos(th2) 
+m3*cos(th2)^2*a2^2-2*I3xx*cos(th3)^2*cos(th2)^2+I3xx*cos(th3)^2-m3*rc3^2*cos(th2)^2 
-m3*rc3^2*cos(th3)^2+I1zz-I3xx-I2yy+I2yy*cos(th2)^2-I2xx*cos(th2)^2+I2zz+I3zz- I3yy*cos(th2)^2 
+m3*rc3^2+I3xx*cos(th2)^2-I3yy*cos(th3)^2- I1xx+2*m3*rc3^2*cos(th3)^2*cos(th2)^2 
+m2*cos(th2)^2*rc2^2+2*cos(th3)*m3*rc3*cos(th2)^2*a2+2*sin(th2)*sin(th3)*I3xx*cos(th3)*cos(th2) 
-2*sin(th2)*sin(th3)*m3*rc3*cos(th2)*a2-2*sin(th2)*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)) 
 
NRCτ(1,2)=-sin(th1)*(- cos(th3)*I3yy*sin(th3)+sin(th2)*I2yy*cos(th2)+sin(th2)*I3xx*cos(th2) 
+sin(th3)*I3xx*cos(th3)- cos(th2)*I3yy*sin(th2)+2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2 
+cos(th2)*rc2*m2*d0+cos(th2)*m3*d1*a2-2*cos(th3)*I3xx*sin(th3)*cos(th2)^2 
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+cos(th2)*cos(th3)*m3*rc3*d0+2*m3*sin(th3)*cos(th2)^2*rc3*a2+cos(th2)*cos(th3)*m3*rc3*d1 
+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2+cos(th2)*m3*sin(th2)*a2^2+cos(th2)*m2*sin(th2)*rc2^2 
-sin(th2)*m3*rc3^2*cos(th2)-2*cos(th2)*I3xx*cos(th3)^2*sin(th2)-sin(th2)*sin(th3)*m3*rc3*d0 
-sin(th2)*sin(th3)*m3*rc3*d1-sin(th3)*m3*rc3*a2- sin(th3)*m3*rc3^2*cos(th3)+cos(th2)*m3*d0*a2 
+2*sin(th3)*I3yy*cos(th3)*cos(th2)^2+2*sin(th2)*I3yy*cos(th3)^2*cos(th2) 
+2*cos(th2)*m3*rc3^2*cos(th3)^2*sin(th2)-cos(th2)*I2xx*sin(th2)+cos(th2)*rc2*m2*d1) 
 
NRCτ(1,3)= cos(th1)*(-cos(th2)*I3yy*sin(th2)+sin(th2)*I3xx*cos(th2)-cos(th3)*I3yy*sin(th3) 
- cos(th2)*I2xx*sin(th2)+sin(th2)*I2yy*cos(th2)+sin(th3)*I3xx*cos(th3) 
+2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2-sin(th3)*m3*rc3^2*cos(th3)- sin(th3)*m3*rc3*a2 
+2*m3*sin(th3)*cos(th2)^2*rc3*a2-sin(th2)*sin(th3)*m3*rc3*d1- sin(th2)*m3*rc3^2*cos(th2) 
+2*sin(th3)*I3yy*cos(th3)*cos(th2)^2-2*cos(th3)*I3xx*sin(th3)*cos(th2)^2 
-2*cos(th2)*I3xx*cos(th3)^2*sin(th2)- sin(th2)*sin(th3)*m3*rc3*d0 
+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2+cos(th2)*m2*sin(th2)*rc2^2+cos(th2)*rc2*m2*d1 
+cos(th2)*rc2*m2*d0+cos(th2)*m3*d0*a2+cos(th2)*m3*d1*a2+cos(th2)*cos(th3)*m3*rc3*d1 
+cos(th2)*cos(th3)*m3*rc3*d0+2*cos(th2)*m3*rc3^2*cos(th3)^2*sin(th2)+cos(th2)*m3*sin(th2)*a2^2 
+2*sin(th2)*I3yy*cos(th3)^2*cos(th2)) 
 
NRCτ(2,1)= -1/4*m3*rc3^2*cos(2*th2-2*th1+2*th3)+1/4*m3*rc3^2*cos(2*th2+2*th1+2*th3) 
-1/4*I3xx*cos(2*th2+2*th1+2*th3)+1/4*I3yy*cos(2*th2+2*th1+2*th3) 
-1/4*I3yy*cos(2*th2-2*th1+2*th3)+1/4*I3xx*cos(2*th2-2*th1+2*th3)+1/4*I2yy*cos(2*th1+2*th2) 
-1/4*I2xx*cos(2*th1+2*th2)+1/4*I2xx*cos(-2*th1+2*th2)-1/4*I2yy*cos(-2*th1+2*th2) 
+1/4*m3*a2^2*cos(2*th1+2*th2)-1/4*m3*a2^2*cos(-2*th1+2*th2)+1/4*m2*rc2^2*cos(2*th1+2*th2) 
-1/4*m2*rc2^2*cos(-2*th1+2*th2)+1/2*m3*rc3*a2*cos(2*th2+th3+2*th1) 
- 1/2*m3*rc3*a2*cos(2*th2+th3-2*th1) 
 
NRCτ(2,2)= cos(th1)*(- 4*I3xx*cos(th3)^2*cos(th2)^2+4*I3yy*cos(th3)^2*cos(th2)^2 
+2*m2*cos(th2)^2*rc2^2-2*m3*rc3^2*cos(th3)^2+2*m3*cos(th2)^2*a2^2+m3*rc3^2-m2*rc2^2 
-2*cos(th2)^2*I2xx+2*I3xx*cos(th2)^2-2*I3yy*cos(th2)^2+2*I3xx*cos(th3)^2-I3xx+I2xx-I2yy+I3yy 
-4*m3*rc3^2*cos(th3)*cos(th2)*sin(th3)*sin(th2)- 4*m3*rc3*sin(th3)*cos(th2)*a2*sin(th2) 
+4*m3*rc3*cos(th3)*cos(th2)^2*a2-4*I3yy*cos(th3)*cos(th2)*sin(th3)*sin(th2) 
- m3*rc3*cos(th3)*sin(th2)*d0-m3*rc3*sin(th3)*cos(th2)*d0+4*I3xx*cos(th3)*cos(th2)*sin(th3)*sin(th2) 
-m3*rc3*cos(th3)*sin(th2)*d1-rc2*m2*sin(th2)*d1-m3*a2^2-m3*rc3*sin(th3)*cos(th2)*d1 
-2*m3*rc3^2*cos(th2)^2-rc2*m2*sin(th2)*d0-m3*sin(th2)*d1*a2-2*m3*rc3*cos(th3)*a2 
-m3*sin(th2)*d0*a2+4*m3*rc3^2*cos(th3)^2*cos(th2)^2-2*I3yy*cos(th3)^2+2*cos(th2)^2*I2yy) 
 
 NRCτ(2,3)= - sin(th1)*(m3*a2^2+rc2*m2*sin(th2)*d1+2*I3yy*cos(th3)^2+2*cos(th2)^2*I2xx 
+m3*rc3*cos(th3)*sin(th2)*d0+4*m3*rc3*sin(th3)*cos(th2)*a2*sin(th2)-2*I3xx*cos(th2)^2 
-2*I3xx*cos(th3)^2+m3*rc3*sin(th3)*cos(th2)*d1-4*m3*rc3*cos(th3)*cos(th2)^2*a2 
+m3*rc3*cos(th3)*sin(th2)*d1-2*cos(th2)^2*I2yy+2*I3yy*cos(th2)^2 
+4*I3yy*cos(th3)*cos(th2)*sin(th3)*sin(th2)+4*m3*rc3^2*cos(th3)*cos(th2)*sin(th3)*sin(th2) 
+2*m3*rc3^2*cos(th3)^2-2*m3*cos(th2)^2*a2^2-4*I3yy*cos(th3)^2*cos(th2)^2-2*m2*cos(th2)^2*rc2^2 
+4*I3xx*cos(th3)^2*cos(th2)^2+2*m3*rc3^2*cos(th2)^2+2*m3*rc3*cos(th3)*a2+m3*sin(th2)*d0*a2 
+m3*sin(th2)*d1*a2+rc2*m2*sin(th2)*d0+I3xx-I2xx+I2yy-I3yy 
-4*I3xx*cos(th3)*cos(th2)*sin(th3)*sin(th2) +m3*rc3*sin(th3)*cos(th2)*d0 
-4*m3*rc3^2*cos(th3)^2*cos(th2)^2+m2*rc2^2-m3*rc3^2) 
       
NRCτ(3,1)= 1/4*m3*rc3^2*cos(2*th2+2*th1+2*th3)-1/4*m3*rc3^2*cos(2*th2-2*th1+2*th3) 
-1/4*m3*rc3*a2*cos(th3-2*th1)+1/4*m3*rc3*a2*cos(th3+2*th1)+1/4*I3yy*cos(2*th2+2*th1+2*th3) 
-1/4*I3yy*cos(2*th2-2*th1+2*th3)+1/4*I3xx*cos(2*th2-2*th1+2*th3) 
- 1/4*I3xx*cos(2*th2+2*th1+2*th3) +1/4*m3*rc3*a2*cos(2*th2+th3+2*th1) 
-1/4*m3*rc3*a2*cos(2*th2+th3-2*th1) 
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NRCτ(3,2)= 1/2*I3yy*cos(-th1+2*th3+2*th2)+1/2*I3yy*cos(th1+2*th3+2*th2) 
-1/2*I3xx*cos(-th1+2*th3+2*th2)-1/2*I3xx*cos(th1+2*th3+2*th2)  
+1/2*m3*rc3^2*cos(-th1+2*th3+2*th2) +1/2*m3*rc3^2*cos(th1+2*th3+2*th2) 
-1/2*m3*rc3*d1*sin(th2+th1+th3)-1/2*m3*rc3*d1*sin(th2-th1+th3)-1/2*m3*rc3*d0*sin(th2+th1+th3) 
-1/2*m3*rc3*d0*sin(th2-th1+th3)+1/2*m3*rc3*a2*cos(2*th2- th1+th3) 
+1/2*m3*rc3*a2*cos(2*th2+th1+th3) 
 
NRCτ(3,3)= 1/2*m3*rc3*a2*sin(2*th2+th1+th3)-1/2*m3*rc3*a2*sin(2*th2-th1+th3) 
-1/2*m3*rc3*d0*cos(th2-th1+th3)+1/2*m3*rc3*d0*cos(th2+th1+th3)-1/2*I3yy*sin(-th1+2*th3+2*th2) 
+1/2*I3yy*sin(th1+2*th3+2*th2)+1/2*I3xx*sin(-th1+2*th3+2*th2)-1/2*I3xx*sin(th1+2*th3+2*th2) 
-1/2*m3*rc3*d1*cos(th2-th1+th3)+1/2*m3*rc3*d1*cos(th2+th1+th3) 
-1/2*m3*rc3^2*sin(-th1+2*th3+2*th2) +1/2*m3*rc3^2*sin(th1+2*th3+2*th2)                                (A-28) 
 
 

Flexible Body Coriolis Joint Torques 
 
NCCτ(1,1)= -sin(th1)*cos(th1)*(2*m3*rc3*cos(th3)*cos(th2)^2*a2 
-2*I3yy*cos(th3)*cos(th2)*sin(th3)*sin(th2) +2*I3xx*cos(th3)*cos(th2)*sin(th3)*sin(th2) 
+m2*cos(th2)^2*rc2^2+m3*cos(th2)^2*a2^2+2*I3yy*cos(th3)^2*cos(th2)^2 
-2*I3xx*cos(th3)^2*cos(th2)^2-m3*rc3^2*cos(th3)^2-m3*rc3^2*cos(th2)^2+I3xx*cos(th3)^2 
+I3xx*cos(th2)^2+I2yy*cos(th2)^2-I2xx*cos(th2)^2-I3yy*cos(th2)^2-I3yy*cos(th3)^2 
-2*m3*rc3^2*cos(th3)*cos(th2)*sin(th3)*sin(th2)- 2*m3*rc3*sin(th3)*cos(th2)*a2*sin(th2) 
+2*m3*rc3^2*cos(th3)^2*cos(th2)^2+m3*rc3^2-I3xx-I2yy+I3zz+I2zz-I1xx+I1zz) 
 
NCCτ(1,2)= sin(th1)*cos(th1)*(2*m3*rc3*cos(th3)*cos(th2)^2*a2 
-2*I3yy*cos(th3)*cos(th2)*sin(th3)*sin(th2) +2*I3xx*cos(th3)*cos(th2)*sin(th3)*sin(th2) 
+m2*cos(th2)^2*rc2^2+m3*cos(th2)^2*a2^2+2*I3yy*cos(th3)^2*cos(th2)^2 
-2*I3xx*cos(th3)^2*cos(th2)^2-m3*rc3^2*cos(th3)^2-m3*rc3^2*cos(th2)^2+I3xx*cos(th3)^2 
+I3xx*cos(th2)^2+I2yy*cos(th2)^2-I2xx*cos(th2)^2-I3yy*cos(th2)^2-I3yy*cos(th3)^2 
-2*m3*rc3^2*cos(th3)*cos(th2)*sin(th3)*sin(th2)- 2*m3*rc3*sin(th3)*cos(th2)*a2*sin(th2) 
+2*m3*rc3^2*cos(th3)^2*cos(th2)^2+m3*rc3^2-I3xx-I2yy+I3zz+I2zz-I1xx+I1zz) 
 
NCCτ(1,3)= 0 
 
NCCτ(2,1)= -1/8*I3yy*sin(2*th2-2*th1+2*th3)- 1/8*I3yy*sin(2*th2+2*th1+2*th3) 
+1/4*I3xx*sin(2*th3+2*th2)+1/8*I3xx*sin(2*th2-2*th1+2*th3)+1/8*I3xx*sin(2*th2+2*th1+2*th3) 
-m3*rc3*d0*cos(th2+th3)-1/4*m3*rc3^2*sin(2*th3+2*th2)-1/8*m3*rc3^2*sin(2*th2+2*th1+2*th3) 
-1/8*m3*rc3^2*sin(2*th2-2*th1+2*th3)-rc2*m2*cos(th2)*d1-rc2*m2*cos(th2)*d0 
-1/2*m3*rc3*a2*sin(2*th2+th3) -1/4*m3*rc3*a2*sin(2*th2+th3+2*th1) 
-1/4*m3*rc3*a2*sin(2*th2+th3-2*th1) -m3*rc3*d1*cos(th2+th3)-1/4*I3yy*sin(2*th3+2*th2) 
-m3*cos(th2)*d0*a2-m3*cos(th2)*d1*a2-1/4*m3*a2^2*sin(2*th2)-1/8*m3*a2^2*sin(2*th1+2*th2) 
-1/8*m3*a2^2*sin(-2*th1+2*th2)-1/4*I2yy*sin(2*th2)-1/8*I2yy*sin(2*th1+2*th2) 
-1/8*I2yy*sin(-2*th1+2*th2)+1/8*I2xx*sin(2*th1+2*th2)+1/8*I2xx*sin(-2*th1+2*th2) 
+1/4*I2xx*sin(2*th2)-1/8*m2*rc2^2*sin(2*th1+2*th2)-1/8*m2*rc2^2*sin(-2*th1+2*th2) 
-1/4*m2*rc2^2*sin(2*th2) 
 
NCCτ(2,2)= 1/8*I3yy*sin(2*th2+2*th1+2*th3)-1/4*I3yy*sin(2*th3+2*th2)+1/4*I3xx*sin(2*th3+2*th2) 
-1/8*I3xx*sin(2*th2-2*th1+2*th3)-1/8*I3xx*sin(2*th2+2*th1+2*th3)+1/8*I3yy*sin(2*th2-2*th1+2*th3) 
-rc2*m2*cos(th2)*d1-rc2*m2*cos(th2)*d0-m3*rc3*d1*cos(th2+th3)-1/2*m3*rc3*a2*sin(2*th2+th3) 
-m3*cos(th2)*d0*a2-m3*cos(th2)*d1*a2- m3*rc3*d0*cos(th2+th3) 
+1/4*m3*rc3*a2*sin(2*th2+th3+2*th1) +1/4*m3*rc3*a2*sin(2*th2+th3-2*th1) 
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-1/8*I2xx*sin(2*th1+2*th2)-1/8*I2xx*sin(-2*th1+2*th2)+1/4*I2xx*sin(2*th2) 
+1/8*m3*a2^2*sin(2*th1+2*th2) +1/8*m3*a2^2*sin(-2*th1+2*th2)-1/4*m3*a2^2*sin(2*th2) 
-1/4*I2yy*sin(2*th2)+1/8*I2yy*sin(2*th1+2*th2)+1/8*I2yy*sin(-2*th1+2*th2) 
-1/4*m3*rc3^2*sin(2*th3+2*th2)+1/8*m2*rc2^2*sin(2*th1+2*th2)+1/8*m2*rc2^2*sin(-2*th1+2*th2) 
-1/4*m2*rc2^2*sin(2*th2)+1/8*m3*rc3^2*sin(2*th2+2*th1+2*th3) 
+1/8*m3*rc3^2*sin(2*th2-2*th1+2*th3) 
  
NCCτ(2,3)= 1/2*m2*rc2^2*sin(2*th2)+1/2*m3*a2^2*sin(2*th2)+1/2*m3*rc3^2*sin(2*th3+2*th2) 
-1/2*I3xx*sin(2*th3+2*th2)- 1/2*I2xx*sin(2*th2)+m3*rc3*a2*sin(2*th2+th3) 
+1/2*I3yy*sin(2*th3+2*th2)+1/2*I2yy*sin(2*th2) 
 
NCCτ(3,1)= -1/4*m3*rc3^2*sin(2*th3+2*th2)-1/8*m3*rc3^2*sin(2*th2-2*th1+2*th3) 
-1/8*m3*rc3^2*sin(2*th2+2*th1+2*th3)+1/4*I3xx*sin(2*th3+2*th2)+1/8*I3xx*sin(2*th2+2*th1+2*th3) 
+1/8*I3xx*sin(2*th2-2*th1+2*th3)-1/8*m3*rc3*a2*sin(th3-2*th1)-1/8*I3yy*sin(2*th2-2*th1+2*th3) 
-m3*rc3*d1*cos(th2+th3)-1/8*m3*rc3*a2*sin(th3+2*th1)+3/4*m3*rc3*a2*sin(th3) 
- m3*rc3*d0*cos(th2+th3) -1/8*m3*rc3*a2*sin(2*th2+th3-2*th1)-1/8*m3*rc3*a2*sin(2*th2+th3+2*th1) 
-1/8*I3yy*sin(2*th2+2*th1+2*th3)-1/4*I3yy*sin(2*th3+2*th2)-1/4*m3*rc3*a2*sin(2*th2+th3) 
  
NCCτ(3,2)= 3/4*m3*rc3*a2*sin(th3)- 1/4*m3*rc3^2*sin(2*th3+2*th2) 
+1/8*m3*rc3^2*sin(2*th2+2*th1+2*th3) +1/8*m3*rc3^2*sin(2*th2-2*th1+2*th3) 
-1/4*I3yy*sin(2*th3+2*th2)+1/8*I3yy*sin(2*th2+2*th1+2*th3)+1/8*I3yy*sin(2*th2-2*th1+2*th3) 
-1/4*m3*rc3*a2*sin(2*th2+th3)+1/8*m3*rc3*a2*sin(2*th2+th3+2*th1) 
+1/8*m3*rc3*a2*sin(2*th2+th3-2*th1)+1/8*m3*rc3*a2*sin(th3+2*th1)+1/8*m3*rc3*a2*sin(th3-2*th1) 
-m3*rc3*d1*cos(th2+th3)-1/8*I3xx*sin(2*th2+2*th1+2*th3)-1/8*I3xx*sin(2*th2-2*th1+2*th3) 
-m3*rc3*d0*cos(th2+th3)+1/4*I3xx*sin(2*th3+2*th2) 
 
NCCτ(3,3)= 1/2*m3*rc3*a2*sin(th3)+1/2*m3*rc3*a2*sin(2*th2+th3)+1/2*m3*rc3^2*sin(2*th3+2*th2) 
-1/2*I3xx*sin(2*th3+2*th2)+1/2*I3yy*sin(2*th3+2*th2)                                                                   (A-29) 
 

Flexible Body Rotational Inertia Torques 
 

BWτ(1,1)= -cos(th1)*(-sin(th3)*I3yy*cos(th3)- a2*rc3*sin(th3)*m3+2*m3*sin(th3)*cos(th2)^2*rc3*a2 
+cos(th2)*cos(th3)*m3*rc3*d1+cos(th2)*cos(th3)*m3*rc3*d0- sin(th3)*rc3^2*m3*cos(th3) 
+cos(th2)*rc2*m2*d0+2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2 
+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2+cos(th2)*rc2*m2*d1- sin(th2)*m3*rc3^2*cos(th2) 
+2*cos(th3)*I3yy*sin(th3)*cos(th2)^2- sin(th2)*sin(th3)*m3*rc3*d0 
+2*cos(th2)*m3*rc3^2*cos(th3)^2*sin(th2)- sin(th2)*sin(th3)*m3*rc3*d1+cos(th2)*m3*d1*a2 
+2*cos(th2)*I3yy*cos(th3)^2*sin(th2)-2*I3xx*sin(th3)*cos(th3)*cos(th2)^2+cos(th2)*m2*sin(th2)*rc2^2 
-2*sin(th2)*I3xx*cos(th3)^2*cos(th2)+sin(th2)*I3xx*cos(th2)- cos(th2)*I3yy*sin(th2) 
+cos(th2)*I2yy*sin(th2) -sin(th2)*I2xx*cos(th2)+cos(th3)*sin(th3)*I3xx 
+cos(th2)*m3*sin(th2)*a2^2+cos(th2)*m3*d0*a2) 
 
BWτ(1,2)= -sin(th1)*(-sin(th3)*rc3^2*m3*cos(th3)- a2*rc3*sin(th3)*m3  
+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2-sin(th2)*sin(th3)*m3*rc3*d0 
+2*cos(th2)*m3*rc3^2*cos(th3)^2*sin(th2)- sin(th2)*sin(th3)*m3*rc3*d1  
+2*m3*sin(th3)*cos(th2)^2*rc3*a2+2*cos(th3)*m3*rc3^2*sin(th3)*cos(th2)^2+cos(th2)*rc2*m2*d1 
-2*I3xx*sin(th3)*cos(th3)*cos(th2)^2-sin(th2)*m3*rc3^2*cos(th2)- 2*sin(th2)*I3xx*cos(th3)^2*cos(th2) 
+2*cos(th3)*I3yy*sin(th3)*cos(th2)^2+2*cos(th2)*I3yy*cos(th3)^2*sin(th2)+cos(th2)*m3*d1*a2 
+cos(th2)*cos(th3)*m3*rc3*d1+cos(th2)*cos(th3)*m3*rc3*d0+cos(th2)*rc2*m2*d0 
+cos(th2)*m2*sin(th2)*rc2^2+cos(th2)*m3*d0*a2+cos(th2)*m3*sin(th2)*a2^2+cos(th2)*I3xx*sin(th2) 
+cos(th2)*I2yy*sin(th2)-sin(th2)*I2xx*cos(th2)+cos(th3)*sin(th3)*I3xx-sin(th3)*I3yy*cos(th3) 
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-cos(th2)*I3yy*sin(th2)) 
 
BWτ(1,3)= 1/2*I2xx+1/2*I2yy-1/2*I3xx*cos(2*th3+2*th2)+m3*rc3*a2*cos(2*th2+th3) 
+1/2*m3*rc3^2*cos(2*th3+2*th2)+1/2*I3yy*cos(2*th3+2*th2)+I1yy+1/2*m3*rc3^2+1/2*I3xx 
+1/2*I2yy*cos(2*th2)+1/2*I3yy-1/2*I2xx*cos(2*th2)+1/2*m3*a2^2+1/2*m3*a2^2*cos(2*th2) 
+cos(th3)*m3*rc3*a2+1/2*m2*rc2^2+1/2*m2*rc2^2*cos(2*th2) 
 
BWτ(2,1)= sin(th1)*(I3zz+m3*sin(th2)*d1*a2+m3*sin(th2)*d0*a2+rc2*m2*sin(th2)*d0 
+rc2*m2*sin(th2)*d1+m2*rc2^2+m3*a2^2+m3*rc3*sin(th3)*cos(th2)*d1+m3*rc3*cos(th3)*sin(th2)*d0 
+m3*rc3*cos(th3)*sin(th2)*d1+2*cos(th3)*m3*rc3*a2+m3*rc3*sin(th3)*cos(th2)*d0+m3*rc3^2+I2zz) 
 
BWτ(2,2)= - cos(th1)*(I3zz+m3*sin(th2)*d1*a2+m3*sin(th2)*d0*a2+rc2*m2*sin(th2)*d0 
+rc2*m2*sin(th2)*d1+m2*rc2^2+m3*a2^2+m3*rc3*sin(th3)*cos(th2)*d1+m3*rc3*cos(th3)*sin(th2)*d0 
+m3*rc3*cos(th3)*sin(th2)*d1+2*cos(th3)*m3*rc3*a2+m3*rc3*sin(th3)*cos(th2)*d0+m3*rc3^2+I2zz) 
 
BWτ(3,1)= sin(th1)*(m3*rc3*sin(th3)*cos(th2)*d0+m3*rc3*sin(th3)*cos(th2)*d1 
+m3*rc3*cos(th3)*sin(th2)*d0+m3*rc3*cos(th3)*sin(th2)*d1+m3*rc3*cos(th3)*a2+m3*rc3^2+I3zz) 
 
BWτ(3,2)= - cos(th1)*(d0*cos(th2)*sin(th3)*rc3*m3+d1*cos(th2)*sin(th3)*rc3*m3 
+d0*sin(th2)*cos(th3)*rc3*m3+d1*sin(th2)*cos(th3)*rc3*m3+a2*cos(th3)*rc3*m3+rc3^2*m3+I3zz) 
 
BWτ(2,3)=BWτ(3,3)=0                                                                                                                             (A-30) 

 
 

Cross Coupling Interaction Torque Effects 
 
NCMτ(1,1)=NCMτ(1,2)=NCMτ(1,3)=NCMτ(2,4)=NCMτ(2,5)=NCMτ(2,6)= NCMτ(2,9)= NCMτ(3,6)=NCMτ(3,7)= 
NCMτ(3,8)=NCMτ(3,9)=0 
 
NCMτ(1,4)= cos(th1)*(-I2xx-I3zz-2*rc3^2*m3+2*cos(th3)^2*rc3^2*m3-2*m2*cos(th2)^2*rc2^2 
+2*m3*rc3^2*cos(th2)^2-2*m3*cos(th2)^2*a2^2+4*I3xx*cos(th3)^2*cos(th2)^2 
-4*I3yy*cos(th3)^2*cos(th2)^2-I3yy-I2zz+I2yy+I3xx+2*cos(th3)^2*I3yy-2*cos(th3)^2*I3xx 
+2*I2xx*cos(th2)^2-2*I2yy*cos(th2)^2+2*I3yy*cos(th2)^2-2*I3xx*cos(th2)^2 
+4*sin(th2)*sin(th3)*I3yy*cos(th3)*cos(th2)-4*sin(th2)*sin(th3)*I3xx*cos(th3)*cos(th2) 
-4*cos(th3)*m3*rc3*cos(th2)^2*a2-4*m3*rc3^2*cos(th3)^2*cos(th2)^2 
+4*sin(th2)*sin(th3)*m3*rc3*cos(th2)*a2+4*sin(th2)*sin(th3)*m3*rc3^2*cos(th3)*cos(th2)) 
 
NCMτ(1,5)= sin(th1)*(-I2xx- I3zz+4*sin(th2)*sin(th3)*m3*rc3^2*cos(th3)*cos(th2) 
+4*sin(th2)*cos(th3)*I3yy*sin(th3)*cos(th2)- 4*sin(th2)*cos(th3)*I3xx*sin(th3)*cos(th2) 
+2*m3*rc3^2*cos(th2)^2+2*m3*rc3^2*cos(th3)^2-4*I3yy*cos(th3)^2*cos(th2)^2 
+4*I3xx*cos(th3)^2*cos(th2)^2-2*m2*cos(th2)^2*rc2^2-2*m3*cos(th2)^2*a2^2-2*m3*rc3^2 
-4*cos(th3)*m3*rc3*cos(th2)^2*a2-2*I3xx*cos(th3)^2+4*sin(th2)*sin(th3)*m3*rc3*cos(th2)*a2 
-2*I2yy*cos(th2)^2-I3yy-I2zz+I2yy+I3xx-2*I3xx*cos(th2)^2+2*I3yy*cos(th2)^2+2*I3yy*cos(th3)^2 
+2*I2xx*cos(th2)^2-4*m3*rc3^2*cos(th3)^2*cos(th2)^2) 
 
NCMτ(1,6)= -m3*a2^2*sin(2*th2)-m2*rc2^2*sin(2*th2)-I3yy*sin(2*th3+2*th2) 
-m3*rc3^2*sin(2*th3+2*th2)+I3xx*sin(2*th3+2*th2)-I2yy*sin(2*th2)+I2xx*sin(2*th2) 
-2*m3*rc3*a2*sin(2*th2+th3) 
 
NCMτ(1,7)= -1/2*m3*rc3^2*cos(th1+2*th3+2*th2)-1/2*m3*rc3^2*cos(-th1+2*th3+2*th2) 
+1/2*I3xx*cos(-th1+2*th3+2*th2)+1/2*I3xx*cos(th1+2*th3+2*th2)-1/2*I3yy*cos(th1+2*th3+2*th2) 
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-1/2*I3yy*cos(-th1+2*th3+2*th2)-m3*rc3^2*cos(th1)-I3zz*cos(th1)-1/2*m3*rc3*a2*cos(2*th2-th1+th3) 
-1/2*m3*rc3*a2*cos(2*th2+th1+th3)-1/2*m3*rc3*a2*cos(-th1+th3)-1/2*m3*rc3*a2*cos(th1+th3) 
 
NCMτ(1,8)= 1/2*m3*rc3*a2*sin(2*th2-th1+th3)-1/2*m3*rc3*a2*sin(2*th2+th1+th3) 
-1/2*m3*rc3*a2*sin(th1+th3)+1/2*m3*rc3*a2*sin(-th1+th3)-m3*rc3^2*sin(th1)-I3zz*sin(th1) 
-1/2*I3yy*sin(th1+2*th3+2*th2)+1/2*I3yy*sin(-th1+2*th3+2*th2) 
+1/2*m3*rc3^2*sin(-th1+2*th3+2*th2)- 1/2*m3*rc3^2*sin(th1+2*th3+2*th2) 
+1/2*I3xx*sin(th1+2*th3+2*th2)-1/2*I3xx*sin(-th1+2*th3+2*th2) 
 
NCMτ(1,9)= -m3*rc3^2*sin(2*th3+2*th2)-m3*rc3*a2*sin(2*th2+th3)-m3*sin(th3)*rc3*a2 
-I3yy*sin(2*th3+2*th2)+I3xx*sin(2*th3+2*th2) 
 
NCMτ(2,1)= cos(th1)*(2*m3*rc3^2+I3yy-I3xx-I2yy+I2xx+I2zz 
-4*m3*rc3^2*cos(th3)*sin(th2)*sin(th3)*cos(th2)+4*m3*rc3*cos(th3)*cos(th2)^2*a2 
-4*I3yy*cos(th3)*sin(th2)*sin(th3)*cos(th2)+4*I3xx*cos(th3)*sin(th2)*sin(th3)*cos(th2) 
-4*m3*rc3*sin(th3)*sin(th2)*a2*cos(th2)-2*m3*rc3^2*cos(th2)^2-2*m3*rc3^2*cos(th3)^2 
+4*I3yy*cos(th3)^2*cos(th2)^2-4*I3xx*cos(th3)^2*cos(th2)^2-2*cos(th2)^2*I2xx-2*I3yy*cos(th2)^2 
-2*I3yy*cos(th3)^2+2*cos(th2)^2*I2yy+2*I3xx*cos(th2)^2+2*I3xx*cos(th3)^2+2*m2*cos(th2)^2*rc2^2 
+2*m3*cos(th2)^2*a2^2+4*m3*rc3^2*cos(th3)^2*cos(th2)^2+I3zz) 
 
NCMτ(2,2)= sin(th1)*(2*I3xx*cos(th2)^2-2*cos(th2)^2*I2xx+2*cos(th2)^2*I2yy-2*I3yy*cos(th3)^2 
-2*I3yy*cos(th2)^2+2*m3*rc3^2+I3yy-I3xx-I2yy+I2xx-2*m3*rc3^2*cos(th2)^2+2*m3*a2^2*cos(th2)^2 
+2*m2*cos(th2)^2*rc2^2-4*I3yy*cos(th3)*sin(th2)*sin(th3)*cos(th2)+4*I3yy*cos(th3)^2*cos(th2)^2 
+4*I3xx*cos(th3)*sin(th2)*sin(th3)*cos(th2)+4*m3*rc3*cos(th3)*cos(th2)^2*a2+2*I3xx*cos(th3)^2 
-4*m3*rc3^2*cos(th3)*sin(th2)*sin(th3)*cos(th2)-4*m3*rc3*sin(th3)*sin(th2)*a2*cos(th2) 
-4*I3xx*cos(th3)^2*cos(th2)^2-2*m3*rc3^2*cos(th3)^2+4*m3*rc3^2*cos(th3)^2*cos(th2)^2+I2zz+I3zz) 
 
NCMτ(2,3)= I3yy*sin(2*th3+2*th2)-I2xx*sin(2*th2)- I3xx*sin(2*th3+2*th2)+m2*rc2^2*sin(2*th2) 
+I2yy*sin(2*th2)+m3*rc3^2*sin(2*th3+2*th2)+2*m3*rc3*a2*sin(2*th2+th3)+m3*a2^2*sin(2*th2) 
 
NCMτ(2,7)= -2*m3*sin(th3)*sin(th1)*a2*rc3 
 
NCMτ(2,8)= 2*m3*sin(th3)*cos(th1)*a2*rc3 
 
NCMτ(3,1)= m3*rc3^2*cos(th1)+1/2*m3*a2*rc3*cos(-th1+th3)+1/2*m3*a2*rc3*cos(th1+th3) 
+I3zz*cos(th1)+1/2*m3*a2*rc3*cos(2*th2- th1+th3)+1/2*m3*a2*rc3*cos(2*th2+th1+th3) 
+1/2*m3*rc3^2*cos(th1+2*th3+2*th2)+1/2*m3*rc3^2*cos(-th1+2*th3+2*th2) 
-1/2*I3xx*cos(-th1+2*th3+2*th2)-1/2*I3xx*cos(th1+2*th3+2*th2)+1/2*I3yy*cos(-th1+2*th3+2*th2) 
+1/2*I3yy*cos(th1+2*th3+2*th2) 
 
NCMτ(3,2)= 1/2*I3xx*sin(-th1+2*th3+2*th2)- 1/2*I3xx*sin(th1+2*th3+2*th2)+m3*rc3^2*sin(th1) 
+I3zz*sin(th1)+1/2*m3*rc3*a2*sin(2*th2+th1+th3)-1/2*m3*rc3*a2*sin(2*th2-th1+th3) 
-1/2*m3*rc3*a2*sin(-th1+th3)+1/2*m3*rc3*a2*sin(th1+th3)+1/2*I3yy*sin(th1+2*th3+2*th2) 
-1/2*I3yy*sin(-th1+2*th3+2*th2)-1/2*m3*rc3^2*sin(-th1+2*th3+2*th2) 
+1/2*m3*rc3^2*sin(th1+2*th3+2*th2) 
 
NCMτ(3,3)= m3*rc3*sin(th3)*a2+m3*rc3*a2*sin(2*th2+th3)+m3*rc3^2*sin(2*th3+2*th2) 
+I3yy*sin(2*th3+2*th2)-I3xx*sin(2*th3+2*th2) 
 
NCMτ(3,4)= 2*m3*sin(th3)*sin(th1)*a2*rc3 
 
NCMτ(3,5)= -2*m3*sin(th3)*cos(th1)*a2*rc3                                                                                       (A-31) 
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A.2 Three Degree of Freedom Spherical Robot 
 
 

The spherical robot was chosen as an alternate configuration for three reasons.  First, it 

is a common robot configuration and modeling information is easily found in many 

robotics texts, including Craig [16] and Sciavicco and Siciliano [59] 

 

Table A-2 
Denavit-Hartenberg Parameters for Spherical Robot 

Link ai αi di θi 
1 0 -π/2 0 θ1 
2 0 π/2 d2 θ2 
3 0 0 d3 0 
 
 

Rotation Matrices: 
 

1 1
0
1 1 1

0
0   

0 1 0

c s
R s c

− 
 =  
 − 

 

 

2 2
1
2 2 2

0   
0

0  1   0

c s
R s c

 
 = − 
  

 

 
 

2
3

1 0 0
0 1 0                                                (A-32)
0 0 1

R
 
 =  
  

 

 
 

Constants: 
 

As=m2r2+m3d2 
Bs=m3r3 (note r3 is not constant) 

Es=m3r3
2 

Fs=I2yy+I3yy 
Gs=I2xx+I3xx 
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Hs=I3zz+I2zz 
Ks=m3a2

2+m2r2
2 

Os=m1r1+(m2+m3)d1                                                                  (A-33) 
 

Position Vector to CG 
 

1 1 2

1 1 2

2

                                                            (A-34)
s s

CG s s

s

A s B c s
A c B s s
O B c

− + 
 = + 
 + 

r
 

 
 

Rigid Inertia Forces 
 

1 1 2 1 2 3 1 2

1 1 2 1 2 3 1 2

2 3 2

3 2
3 2 3

                                   (A-35)
           0        c  

s s s

F s s s

s

f

A c B s s B c c m c s
B A s B c s B s c m s s

B s m

B m s r

− − 
 = − + 
 − 

= −

 

 
 

Rigid Inertia Interaction Torques 
 

0 1 2 2 1 1 2 2 1 2 1 1

0 1 1 1 2 2 1 2

0 3 1 1 2 2 1 2

0 1 2 2 1 1 2 2 1 2 1 1

0 1 1 1 2 2 1 2

(1 ,1 ) ( ) ( )
(1 , 2 ) ( ) ( )
(1 , 3 ) ( )
( 2 ,1 ) ( ) ( )
( 2 , 2 ) ( ) ( )

s s s s s

s s s

s s s s s

s s s

B H E G c c s B a c s a s c A a s
B E F s B a s c a c s
B m a s s a c c
B H E G s s c B a s s a c c A a c
B E F c B a c c a s s
B

τ

τ

τ

τ

τ

= − − + + −
= − + + −
= +
= − − + − +
= + − +

0 3 1 1 2 2 1 2

2
0 1 2

0 2 2

0 3 2 2

( 2 , 3 ) ( )

( 3 ,1 ) ( )

( 3 , 2 )
( 3 , 3 )                                                             ( A - 3 6 )

s y y s s s s s

s

m a c s a s c
B E I G K H E G c
B B a c
B m a s

τ

τ

τ

τ

= − −

= + + + + − −

= −
= −

 

 
Rigid Nonlinear Coriolis Torques 

 
NRτ0(1,1)=-cos(th1)*(2*m3*rc3^2*cos(th2)^2+2*I3xx*cos(th2)^2-2*I3zz*cos(th2)^2+2*I2xx*cos(th2)^2 
-2*I2zz*cos(th2)^2+I3zz+I3yy-I3xx+I2zz+I2yy-I2xx-2*m3*cos(th2)*rc3*a1) 
 
NRτ0(2,1)= -sin(th1)*(2*m3*rc3^2*cos(th2)^2+2*I3xx*cos(th2)^2-2*I3zz*cos(th2)^2+2*I2xx*cos(th2)^2 
-2*I2zz*cos(th2)^2+I3zz+I3yy-I3xx+I2zz+I2yy-I2xx-2*m3*cos(th2)*rc3*a1) 
 
NRτ0(3,1)= 2*sin(th2)*cos(th2)*(m3*rc3^2+I3xx-I3zz+I2xx-I2zz) 
 
NRτ0(1,2)=NRτ0(1,3)= NRτ0(2,2)=NRτ0(2,3)= NRτ0(3,2)= NRτ0(3,3)=0                                         (A-37) 
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Rigid Nonlinear Centrifugal Torques 

 
NCτ0(1,1)= cos(th1)*m3*cos(th2)*rc3*a2-cos(th1)*m3*a2*a1- cos(th1)*m2*rc2*a1 
 
+sin(th1)*sin(th2)*m3*rc3^2*cos(th2)+sin(th1)*sin(th2)*I3xx*cos(th2)- sin(th1)*sin(th2)*I3zz*cos(th2) 
+sin(th1)*sin(th2)*I2xx*cos(th2)-sin(th1)*sin(th2)*I2zz*cos(th2)-sin(th1)*m3*rc3*a1*sin(th2) 
 
NCτ0(1,2)= -m3*rc3*(cos(th1)*cos(th2)*a2+sin(th1)*a1*sin(th2)) 
 
NCτ0(2,1)= sin(th1)*m3*cos(th2)*rc3*a2-sin(th1)*m3*a2*a1-sin(th1)*m2*rc2*a1 
- cos(th1)*m3*rc3^2*cos(th2)*sin(th2)-cos(th1)*cos(th2)*I3xx*sin(th2)+cos(th1)*sin(th2)*I3zz*cos(th2) 
-cos(th1)*cos(th2)*I2xx*sin(th2)+cos(th1)*sin(th2)*I2zz*cos(th2)+cos(th1)*m3*rc3*a1*sin(th2) 
 
NCτ0(2,2)= -m3*rc3*(sin(th1)*cos(th2)*a2-cos(th1)*a1*sin(th2)) 
 
NCτ0(3,2)= m3*rc3*a2*sin(th2) 
 
NCτ0(1,3)= NCτ0(2,3)= NCτ0(3,1)= NCτ0(3,3)=0                                                                                   (A-38) 

 
 

Rigid Joint Torques 
 

2
1 2 2 2 3 2 2

2 2

3 2 2 3

( )

0                                    (A-39)
0

yyE G H I D E G c Ba c ma s
B Ba c E F

ma s m
τ

 + + + + − − − −
 

= − + 
 −  
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A.3 Three Degree of Freedom Wrist 
 

 The third configuration chosen was a wrist configuration due to its common use 

in combination with other robots and availability for use in conjunction with the 

anthropomorphic robot on the experimental testbed. 

 
Table A-3 

Denavit-Hartenberg Parameters for Wrist 
Link ai αi di θi 
3 0 π/2 d3 θ3 
4 0 -π/2 d4 θ4 
5 0 π/2 d5 θ5 
6 0 0 d6 θ6 
 
 

Rotation Matrices 
 

4 4
3
4 4 4

cos( ) 0 sin( )
sin( ) 0 cos( )
0         -1    0

R
θ θ
θ θ

− 
 =  
  

 

6 6
5
6 6 6

cos( ) sin( ) 0
sin( ) cos( )  0
0            0       1

R
θ θ
θ θ

− 
 =  
  

 

5 5
4
5 5 5

cos( ) 0 sin( )
sin( ) 0 cos( )                                      (A-40)
0        1        0

R
θ θ
θ θ

 
 = − 
  

 

 
 
 

Constants 
 

Aw=m5r5+(d5+r6)m6 
Ew=m6r6

2 

Jw=I6yy-I6xx 
Kw=m5r5

2+m6d5
2 

Lw= I5xx-I5zz+I6yy-I6zz +2m6r6d5 
Mw=I5yy+I6xx+2m6r6d5 

Nw=I4yy+I5xx+I6yy+2m6r6d5                                                             (A-41) 
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Position Vector to CG 
 

6 4 5

6 4 5

3 5 3

cos( )sin( )
sin( )sin( )                                           (A-42)
(cos( ) )

CG

m
m
m r

θ θ
θ θ
θ

 
 =  
 − 

r  

 
 

Rigid Inertia Forces 
 

4 5 4 5

4 5 4 5

5

 0
           0                                        (A-43)
      0         0

w w

f w w

w

A s s A c c
B A c s A s c

A s

− 
 =  
 − 

 

 
 

Rigid Inertia Interaction Torques 
 
 

{ }

{ }

0 5 4 5 4 4 6 4 6 4 5 6

0 4 4 4 5 6 4 6 4 5 6

0 6 4 5

0 5 4 5 4 4 6 4 6 4 5 6

0 4 4 4 5

(1,1) ( ) ( )
(1,2) ( ) ( )
(1,3)
(2,1) ( ) ( )
(2,2) ( )

w w w w w

w w w w w

zz

w w w w w

w w w w

B s K E L c c A d c J c s s c c c
B M E L s A d s c J c s c c c s
B I c s
B s K E L s c A d s J c c s s c c
B M E L c A d c c J

τ

τ

τ

τ

τ

= − + + + + −
= − + + − − +
=
= − + + − + −
= + + + + 6 4 6 4 5 6

0 6 4 5
2 2 2

0 5 5 6

0 5 6 6

0 6 5

( )
(2,3)
(3,1) ( )
(3,2)
(3,3)                                                                                                (A-44)

w

zz

w w w w

w

zz

c c c s c s
B I s s
B s K E L J s c
B J s s c
B I c

τ

τ

τ

τ

−
=

= − + + −
=
=
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A.4 Six Degree of Freedom Anthropomorphic Robot with Wrist 
 

Rotation Matrices 
 
 

1 1
0

1 1 1

cos( ) 0   sin( )
sin( ) 0 cos( )
    0     1     0

R
θ θ
θ θ

 
 = − 
  

 

2 2
1
2 2 2

cos( ) sin( )   0
sin( )     cos( ) 0
   0          0        1

R
θ θ
θ θ

− 
 =  
  

 

3 3
2
3 3 3

cos( ) sin( ) 0
sin( ) cos( ) 0
  0           0      1

R
θ θ
θ θ

− 
 =  
  

 

3
4 4 4

4 4

  0 1     0
cos( )  0  sin( )
sin( ) 0   cos( )

R θ θ
θ θ

− 
 =  
 − 

 

5 5
4
5 5 5

cos( ) 0  sin( )
sin( ) 0 cos( )
0         1      0

R
θ θ
θ θ

 
 = − 
  

 

6 6
5
6 6 6

cos( ) sin( ) 0
sin( )  cos( ) 0                                   (A-45)
     0        0    1

R
θ θ
θ θ

− 
 =  
  

 

 
 

Constants 
 

2 2 3 4 5 6 2

3 3 4 5 6 3 4 4 5 6 4

5 5 6 5 6 6

0 0 0 1 2 3 4 5 6 1 2 3 4 5 6 1 1

0 1 2 3 4 5 6

( )
( ) ( )

( ) ( )
                                           

aw

aw

aw

aw

Taw

M m r m m m m a
N m r m m m a m r m m d
O m r m d m r
P m r d m m m m m m d m m m m m m r
M m m m m m m m

= + + + +
= + + + + + +
= + +
= + + + + + + + + + + + +
= + + + + + +          (A-46)
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Position Vector To CG 
 

1 2 23 5 23 4 5 23 1 4 5

1 2 23 5 23 4 5 23 1 4 5

2 23 5 23 4 5 23

( )
1 ( )                    (A-47)

aw aw aw aw

CG aw aw aw aw
Taw

aw aw aw aw aw

c M c N c O c c O c s s Os s s
s M c N c O c c O c s s Oc s s

M
P M s N s O c s O c s c

+ + − − 
 = + + − + 
 + + + + 

r
 

 
 

Rigid Interaction Forces 
 

Bf= 
 

1 2 23 5 23 4 5 1 4 5 1 2 23 5 23 4 5 1 4 5

1 2 23 5 23 4 5 1 2 23 5 23 4 5 2 5 23 4 5

{ ( ) }   { ( ) }                     0
       { ( ) }         { ( ) }       ( )
         

s Mc c N Oc Os c s Oc s s c Mc c N Oc Os c s Os s s
c Ms s N Oc Oc c s s Ms s N Oc Oc c s c M N Oc Os c s

− + + + − + + − −
− + + + − + + + + + −

1 23 5 23 4 5 1 23 5 23 4 5 23 5 23 4 5

5 1 23 4 1 4 5 1 23 4 1 4

 { ( ) }                        { ( ) }                ( )
                ( )                                         ( )     

c s N Oc Oc c s s s N Oc Oc c s c N Oc Os c s
Os c s s s c Os s s s cc

− + + − + + + −
− + 23 4 5

1 23 5 23 4 5 1 4 5 1 23 5 23 4 5 1 4 5 23 4 5 5 23

                         
        { ( ) }                     { ( ) }                     ( )
                               0               

Oc s s
O c c s s c c s s c O s c s s c c c s c O c c c s s

−
− + + − + + −

                                                     0                                                      0

T
 
 
 
 
 
 
 
 
  

 

(A-48) 
 

Rigid Interaction Coriolis Forces 
 
 

1 2 23 5 23 4 5 1 2 23 5 23 4 5

1 23 5 23 4 5 1 23 5 23 4 5

1 *

2 { ( ) }  -2 { ( ) }                    0
     2 { ( ) }         -2 { ( ) }                     

f
Taw

aw aw aw aw aw aw aw aw

aw aw aw aw aw aw

NR
M

s M s s N O c O c c s c M s s N O c O c c s
s s N O c O c c s c s N O c O c c s

=

+ + + + + +
+ + + +

5 1 23 4 1 4 5 1 23 4 1 4

1 5 23 23 4 5 1 4 5 1 23 5 23 4 5 1 4 5

        0
          -2 { }                       -2 { }                                            0
   2 { ( ) }      2 { ( ) }    

aw aw

aw aw

O s ss s cc O s cs s sc
O s s c s c c cs c O c c s s c s s s c

+ − +
+ − − + +

1 23

                                   0
                       0                                                        0                                                                    0   
  2 { (c c N− 5 23 4 5 1 23 5 23 4 5 23 5 23 4 5

1 23 4 5 1 23 4 5

) }         2 { ( ) }     -2{ ( ) }
              2                                      2                               

aw aw aw aw aw aw aw aw aw

aw aw

O c O s c s s c N O c O s c s s N O c O c c s
O cc s s O sc s s

+ + − + + + +

23 4 5

1 23 5 23 4 5 1 23 5 23 4 5 23 5 23 4 5

                     2                 
      -2 { }                      -2 { }                           -2 { }
                       0          

aw

aw aw aw

O s s s
O c s s c c c O s s s c c c O c s s c c− + − + +

1 23 4 5 1 23 4 5

                                           0                                                                     0
                2                                     2          aw awO cc s s O sc s s 23 4 5

1 23 5 23 4 5 1 23 5 23 4 5 23 5 23 4 5

                                       2
       -2 { }                    -2 { }                           -2 { }
                      0         

aw

aw aw aw

O s s s
O c s s c c c O s s s c c c O c s s c c− + − + +

5 1 23 4 1 4 5 1 23 4 1 4

                                             0                                                                     0
        -2 { }                       2 { }             aw awO c cs s sc O c ss s cc− + + 23 4 5                        -2

T

awO c s c

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

(A-49) 
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Rigid Interaction Centrifugal Forces 
 
 
 

1 4 5 2 23 5 23 1 4 5

1 2 23 5 23 4 5

1 23 5 23 4 5

1 23 4 1 4

1(1,1) * { ( ) }

1(1,2) * { ( ) }

1(1,3) * { ( ) }

1(1,4) *{ ( )}

(1,5)

f aw aw aw aw aw
Taw

f aw aw aw aw
Taw

f aw aw aw
Taw

f aw
Taw

f

NC cc s M c c N O c O s O ss s
M

NC c M c c N O c O s c s
M

NC c c N O c O s c s
M

NC O cs c ss
M

NC

= − − + + +

= − − + +

= − + +

= +

= 1 23 4 5 5 23 1 4 5

1 2 23 5 23 4 5 1 4 5

1 2 23 5 23 4 5

23 5 23 4 5

1 *{ [ ( ] }

(1,6) 0

1(2,1) *{ [ ( ) ]

1(2,2) *{ [ ( ) ]

1(2,3) *{ ( )

aw
Taw

f

f aw aw aw aw
Taw

f aw aw aw aw
Taw

f aw aw aw
Taw

O c s c s c c ss s
M
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NC s M c c N O c O s c s Ocs s
M

NC s M c c N O c O s c s
M

NC c N O c O s c s
M

− +

=

= − − + + −

= − − + +

= − + +

5 1 23 4 1 4

1 23 4 5 5 23 1 4 5

2 23 5 23 4 5

23 5 23 4 5

}

1(2,4) *{ ( )
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(2,6) 0

(3,1) 0

1(3,2) *{ [ ( ) }
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f aw
Taw
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Taw

f

f

f aw aw aw aw
Taw

f aw aw aw
Taw

f

NC O s ss c cs
M

NC O s s c s c c cs s
M

NC
NC

NC M s s N O c O c c s
M

NC s N O c O c c s
M
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= − −

=
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23 4 5
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NC O c s c c s
M

= −
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(A-50) 
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