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I. Introduction 

A. Background 

The traditional method to control hydraulic equipment has been accomplished with the 

use of manual proportional valves. For example, a typical diesel powered earthmoving

vehicle generates hydraulic pressure with a pump, which is mechanically driven by the

engine. The pump delivers hydraulic power to its implements, such as a backhoe, loader, 

or auger, via manual valves that are controlled by the operator. A direct mechanical

connection exists between the operator’s hand and the spool in the valve through a lever 

and connecting linkages. The spool must be displaced from its zero position to allow 

high-pressure fluid to flow from the pump to the cylinders and cause the implement to 

move. Each lever may control either one or two degrees of freedom of the implement.

A backhoe operator must control multiple levers simultaneously in order to produce the 

desired end-effector (bucket) motion, which is a skill that takes time to learn. Also, 

feedback information on the forces experienced by the bucket is limited, in the form of 

compliance in the levers due to cylinder pressure changes, engine speed changes under 

load, and vehicle vibration.

The purpose of this project is to explore the viability of applying modern control

techniques to hydraulic earthmoving equipment. The current design includes state 

feedback control and haptic force display to the operator’s hand. It is proposed that with

proper control system design, the implement’s performance and user interface can both 

be improved for greater productivity and shorter operator training time, without 

significant increases in manufacturing costs. 

B. The Robotic Backhoe with Haptic Display 

Figure 1 illustrates the system under investigation. The John Deere Model 47 backhoe 

attachment is mounted on a 4410 tractor. The master manipulator is the Personnel Haptic 

Interface Mechanism (PHANTOM), hereafter referred to as the master, developed at MIT 
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and produced commercially by Sensable Technologies. Additional proposed components

include solenoid valves, angle encoders, and a PC-104 controller. 

Figure 1: Robotic Backhoe with Haptic Display 
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Figure 1 is a block diagram of the system under consideration. The desired bucket 

position is defined as the input and the actual bucket position as the output. Several 

simplifications and assumptions will be made to the system shown in Figure 1. A 

dynamic state space model will be derived, a potential controller will be proposed, and

simulation results will be presented.

II. Component Modeling 

A. Valve and Cylinder 

Figure 2 illustrates an electrically actuated proportional valve connected to a hydraulic 

cylinder.

Figure 2: Valve and Cylinder 
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When the valve spool is displaced from ys=0, a series of events occur, which can be 

described by the following equations. Assuming incompressible fluid and conservation of 

mass, the flow through the valve into the cylinder is 

iccxx QVAVA                                               (1) 

where Ax denotes the cross section of the opening between the spool and valve body, 

Ax=ysw and w is the spool’s width. Ac is the cylinder area, Vx and Vc  are the fluid 

velocities, and Qi is the flow rate.

Assuming inviscid fluid and no energy losses between points 1 and 2, conservation of 

energy along a streamline requires that 
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where ps and pc are the supply pressure and cylinder pressure, and  is the fluid density. 

Combining equations (1) and (2) and solving for the flow rate results in 
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which shows that the flow rate into the cylinder is a function of spool displacement and 

cylinder pressure, assuming constant supply pressure from the pump. Equation (3) can be 

linearized about operating points sy and cp ,
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where the sensitivity of fluid flow with respect to cylinder pressure kp is negative and 

is the differential pressure across the cylinder because the equilibrium pressures are

equal.

cp̂

Neglecting the dynamics of the valve spool, the spool position is assumed to be 

proportional to the driving voltage sent to the coil:

coilcoils VKy ˆˆ        (5)
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B. Rod, Bucket and Soil

Neglecting the kinematics of the backhoe’s links, the rod and bucket will be modeled as a 

single rigid mass, as illustrated in Figure 3. 

Figure 3: Rod and Bucket 
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Applying Newton’s second law on the rod/bucket mass, equation (6) describes the 

motion of the bucket: 

ebceeccc ymmfybpA ˆ     (6)

where the cross-sectional area of the rod has been neglected and is the net hydraulic 

pressure acting on the cylinder. 

cp̂

The soil is modeled as a passive compliance:

eeeee ykybf       (7)

Note that the values of be and ke will vary dramatically, depending on the soil’s 

composition, density, moisture content, etc. For this simulation, the values of be=2x10
7

Ns/m and ke=5x10
3
 N/m have been used. 
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C. Bucket Dynamics 

Substituting equations (1) and (5) into (4) gives

cpcoilcoilyec pkVKkyA ˆˆ      (8)

where . Solving (8) for the differential cylinder pressure,ce Vy
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Substituting equations (9) and (7) into (6), 
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and then rearranging (10) results in the dynamic equation of the bucket motion in terms

of the voltage input to the coil in the valve: 
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or more simply 

coileee Vbyayay ˆ
121 (12)

The coefficients in (12) can be found in (11) by inspection. 

D. The Human Operator 

The human operator will be modeled as if providing proportional error feedback, where 

the force exerted on the master is proportional to the error between the desired and actual 

bucket location: 

)( edesuserhand yyKF (13)
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E. Haptic Display forces

Two forces are represented and displayed haptically to the user’s hand by the master. The 

first force is the digging force, which is proportional to the differential cylinder pressure: 

cforfor pKF ˆ (14)

The second force is the tracking error force, which is proportional to the tracking error 

between the master position and bucket position, scaled by the workspace scaling ratio: 

emscalepospos yyKKF (15)

where ym is the master position and Kscale is the ratio of the bucket workspace to the

master workspace. 

F. Phantom Dynamics 

Figure 4 shows the forces acting on the master. The input force handF is supplied by the 

operator, and and are calculated by the controller and represented by the 

actuators in the master. The damping force resisting the master velocity has been 

added to improve stability. 

forF posF

mm yb

Figure 4: Forces on the master

mm

handF

posF

my

forF

mm yb

input force from operator

digging force tracking error force 

Applying Newton’s 2
nd

 Law to the master yields

mmmmposforhand ymybFFF (16)

Substituting equations (13), (14), and (15) into (16) yields
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mmmmemscaleposcforedesuser ymybyyKKpKyyK ˆ)( (17)

Substituting equation (9) into (17) and solving for the master acceleration  yields the 

equation of motion of the master in terms of the desired bucket position y

my

des and the 

voltage to the valve coil V :coil
ˆ
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or more simply, 

descoileemmm ybVbyayayayay 326543
ˆ    (19) 

and the coefficients in (19) can be found in (18) by inspection. Note that this is a two-

input system, ydes from the operator and V  from the yet-to-be-determined controller,

and the master’s dynamics are coupled with the bucket’s dynamics via the haptic display 

forces.

coil
ˆ

III. System Modeling 

A. Open-Loop State Space Model 

Defining the state variables 

meme yxyxyxyx 4321 ,,, (20)

and using equations (12) and (19), the continuous time state space equations for the open-

loop plant are 
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tButAxtx

)()( tCxtye (22)

B. Discretization

The discrete time state matrices G and H corresponding to the continuous time state 

matrices are found by solving the convolution integral over one time step T:

T
AtAT kTuBdtekTxeTkx

0
)(1 (23)

where

Tt

AteG , (24)
T

At BdteH
0

and the input is assumed constant over the interval. For a linear time-invariant system, the 

state transition matrix  can be found either with the Laplace Transform method,Atet

11 AsILeAt (25)

or a Taylor Series expansion 
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resulting in the discrete state matrix equation

)()()1( kHukGxkx (27)

where the time step T is implicit and has been removed for clarity. In this report, the 

Matlab function ‘c2d’ has been used to compute the values of G and H.

C. Velocity Observer 

It is assumed that the master and bucket will both possess position sensors allowing for

direct feedback control on ye and ym. It is also assumed that neither of the velocities

and will be available; therefore, an observer will be required to provide feedback

on these states.

ey my

Partitioning equation (21) into measurable and immeasurable states and defining the 

output as the measurable states, the open-loop plant becomes
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where the measurable states are 
T

mea yykx )(  and the immeasurable states are 

. The system to be observed is 
T

meb yykx )(

)()(ˆ)()()1( 21 kyHkVHkyGkxGkx desbcoilbbabbbb     (29) 

Rearranging the first submatrix equation in (28) results in 

)()()(ˆ)()1( 21 kxGkyHkVHkxGkx babdacoilaaaaa     (30) 

The velocity state observer is defined as: 

)(ˆ)()()(ˆ)()(ˆ)1(ˆ
21 kxkxLGkyHkVHkyGkxGkx bbabdesbcoilbbabbbb

    (31) 

where is a replica of the immeasurable states and the last term on the right corrects 

for observer inaccuracies. Substituting equation (30) into (31), replacing x

)(ˆ kxb

a(k+1) with 

y(k+1) and rearranging gives 
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Equation (32) cannot be directly augmented into the state matrix because of the term

y(k+1) on the right hand side. To alleviate this problem, define 

)()(ˆ)( kLykxk b (33)

then

)()()(ˆ)(ˆ

)1()1(ˆ)1(

2211 kyLGGkyLHHkVLHHkxLGG

kLykxk

aabadesabcoilabbabbb

b

(34)

and rearranging
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and

)()()(ˆ kLxkkx ab (36)

where y(k) was replaced with xa(k) in (30). This will be used later for feedback on the

immeasurable velocity states. In the simulations that follow, the observer gains L were 

chosen such that the observer exhibited deadbeat response, i.e. the poles of Gbb-LGab

were placed at the origin in the z-plane.

D. Integrated Error 

Define a new state that sums all of the errors between the scaled master position and 

bucket position from the starting point to the previous time step: 

1

1
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then the next value of (k) will be

)()()()1( kkykyKk emscale (38)

Defining an error vector,

scaleKE 1 (39)

equation (38) becomes
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E. Augmented State Equation 

Combining equations (28), (35), and (40) results in the augmented state equation, now 

increased in order by three from the observer and integration equations, to a total of seven 

states:
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where aabaabbby LGGLLGLGH , abbbr LGGG , 111 abu LHHH , and 

 from (35). Thus the immeasurable states are available via the 

observer (k) in equation (41), via equation (36), and the integrated sum of the errors are 

available as (k).

22 ab LHH2uH

IV. Controller Design 

Equation (41) can be written more compactly as

)()(ˆ)()1( 1 kHykVHkxGkx descoilo (42)

The final step that remains is to relate the input to the plant V to the other state

variables. Define the control law as
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which is a form of a PID controller. Substituting equation (39) into (43) and using the

partitioned states yields
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and substituting equation (36) into (44) and rearranging gives 
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Finally, substituting (45) into (41) yields the final form of the state equation, including

velocity observer, full state feedback, and PID control: 

)()()1( 1 kHykxKHGkx desco

(46)

)(000)( kxCkye

V. Simulation 

A. Parameter and Gain Selection 

The system derived above was coded into Matlab using the system parameters and gains 

listed in Table 1. 

Table 1: System Parameters and Control Gains 

Variable Description Value Units

System

Parameters

Ac Cylinder area 0.08 m
2

mc Rod mass 50 kg

mb Bucket mass 50 kg

ky Valve sensitivity to spool position 5 m
2
/s

kp Valve sensitivity to pressure changes -4 10
-9

m
3
/Pa s

Kcoil Spool position/voltage gain 0.004 m/V

bc Cylinder friction 0.1 N s/m

be Soil damping coefficient 2 10
-7

N s/m

ke Soil spring coefficient 5 10
-3 N/m

mm Mass of master 0.05 kg

Control Gains

Kscale Workspace scaling ratio 12 m/m

bm Master damping coefficient 5 N s/m

Kuser Operator force/error gain 1 N/m

Kpos Haptic tracking error gain 20 N/m

Kfor Haptic digging force gain 6 10
-9 N/Pa

Kp Proportional state feedback gain 30 V/m

Kv Velocity state feedback gain 4 V s/m

KI Integral state feedback gain 60 V/ m s

These values may be found in the Matlab code given at the end of the report. 
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B. Step Response 

Using the values listed in Table 1, the system response to a step input ydes=1m is 

illustrated in Figure 5. 

Figure 5: System Step Response 

Figure 5 illustrates the positions of the bucket and master, as well as the driving voltage

sent to the valve coil (control effort) and the estimated cylinder pressure in response to a 

step input. Physically, this would represent the bucket being forced one meter downward 

into the soil, starting at ground level ye=0. Note that the system reaches steady state in

approximately five seconds and exhibits no steady state error. Also, note that the final 

position of the master is the same as the scaled position of the bucket, where 

Kscaleym=(12)(0.083m)=1m=ye. The cylinder pressure is computed from equation (9), 

where the estimated cylinder velocity has been used from the observer, 

.)()()()(ˆ
2,11,11 kyLkyLkky mee

Figure 6 illustrates the position error and integrated error during the simulation. The error 

is defined as the difference between the bucket position and the scaled master position, 

error=Kscaleym-ye.
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Figure 6: System Error 

Figure 6 illustrates that the simulated system exhibits zero steady state error due to the

combination of feedback on the two error signals. 

C. System Robustness to Parameter Variations 

In practice, it is expected that the system parameters most likely to vary will be the soil 

properties. Figure 7 illustrates the step response of the system after a decrease by a factor 

of ten in the spring and damping coefficients of the soil. 

Figure 7: System Step Response after soil property change. 

Thus the simulated system is robust to changes in soil properties. 
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VI. Conclusions

A simplified dynamic model of the Robotic Backhoe with Haptic Display has been 

derived, a PID controller has been designed, and simulations presented. At this time,

although the results are inconclusive as to whether a backhoe’s performance can be 

improved, they are promising.

Currently, many of the system components have yet to be specified. Therefore, the 

system parameters listed in Table 1 had to be chosen judiciously from catalogs, manuals,

and rough measurements on the backhoe. In the end, most of the values used were 

estimations, and gains were then chosen to produce a desirable response. The system

parameters will need to be updated and the gains adjusted once the valves, sensors, and

other equipment becomes available.

For several reasons, it is suspected that the greatest contributor to modeling inaccuracies

will be in the valve. First, since the flow equation has been linearized about a nominal

operating point, any significant deviation from this point will contribute to error.

Second, it is expected that the valve will be in saturation—i.e. at maximum flow and at 

the end of the spool’s travel—during much of its operation. This factor has been 

accounted for in equation (4) by increasing the flow sensitivity to ky=5m
2
/s, a value that

is overestimated based upon the flow rates given for typical proportional valves in this 

GPM range.

Third, most lower-end proportional valves have a deadband such that the valve exhibits 

zero flow over a range around zero, and consequently cannot reverse flow 

instantaneously.

Finally, the response time of many proportional valves is on the order of 50 ms, so the 

backhoe’s speed will be limited by this factor in addition to the maximum flow rate.

Soil properties are expected to vary depending on composition, density, moisture content, 

etc. In addition, the passive compliance model given in equation (7) will vary depending 

on the geometry of the bucket.

The next step is to extend the model to include 3-D link space kinematics, simulate the 

system dynamics by computing the geometric Jacobian, and solving the forward 

dynamics equations at every time step. Much of this work has been performed, and only 

needs to be incorporated with the control design contained herein. The result of this 

extended model will certainly be an important milestone in the development of the 

Robotic Backhoe with Haptic Display. 
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VII. Matlab Code 

% BACKHOE 1-D POSITION CONTROL w/HAPTIC FORCE FEEDBACK 

close all ; clear all ; clc ; 

% Joystick parameters 
mm=0.05;
bm=5;
Kfor=6e-9;
Kpos=20;
Kscale=12;
Kuser=1;

% PID Controller Parameters 
T=0.1;
KP=30;
KV=4;
KI=60;

% Valve parameters 
Kcoil=0.004;
ky=5;
kp=-4e-9;

% Cylinder parameters 
Ac=0.08; % ~4" dia cylinder 
bc=0.1;
mc=50;

% Bucket parameters 
mb=50;

% Soil parameters 
ke=5e3
be=2e7;

% Simulation time vector 
t=0:T:1e2*T;

% Define constants/coefficients 
a1=(Ac^2/kp-(bc+be))/(mc+mb);
a2=-ke/(mc+mb);
b1=(-Ac*ky*Kcoil)/((mc+mb)*kp);

a3=-bm/mm;
a4=-Kpos*Kscale/mm;
a5=-(Kfor*Ac)/(mm*kp);
a6=(Kpos-Kuser)/mm;
b2=(Kfor*ky*Kcoil)/(mm*kp);
b3=Kuser/mm;

% Define continuous time system
A=[0 0 1 0; 
   0 0 0 1; 
   a2 0 a1 0; 
   a6 a4 a5 a3;]; 
B=[0 0;0 0;b1 0;b2 b3]; 
C=[1 0 0 0]; 
D=0;
sysc=ss(A,B,C,D);

% Discretize system
sysd=c2d(sysc,T);
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[G H C D]=ssdata(sysd); 

% Partition into measurable and immeasurable state equations
Gaa=G(1:2,1:2);
Gab=G(1:2,3:4);
Gba=G(3:4,1:2);
Gbb=G(3:4,3:4);
Ha1=H(1:2,1);
Hb1=H(3:4,1);
Ha2=H(1:2,2);
Hb2=H(3:4,2);

% Place poles for deadbeat observer 
L=place(Gbb,Gab,[0 0]); 

% Define observer submatrices 
Gr=Gbb-L*Gab;
Hy=Gr*L+Gba-L*Gaa;
Hu1=Hb1-L*Ha1;
Hu2=Hb2-L*Ha2;

% Define Integral of Error state 
E=[-1 Kscale]; 

% Define system matrices w/o feedback control 
Go=[Gaa Gab zeros(2,3); 
   Gba Gbb zeros(2,3); 
   Hy zeros(2) Gr [0 0]'; 
   E zeros(1,4) 1;]; 
H1=[Ha1;Hb1;Hu1;0];
H=[Ha2;Hb2;Hu2;0];

% Define PID Controller
Kc=[KP*E+KV*E*L 0 0 KV*E KI]; 

% Define closed-loop discrete-time system 
C=[1 zeros(1,6); 
   0 1 zeros(1,5); 
   Kc; 
   L(1,1) L(1,2) 0 0 1 0 0; 
   zeros(1,6) 1; 
   E zeros(1,5);]; 
Gcl=Go+H1*Kc;
sysd=ss(Gcl,H,C,0,T);
pole(sysd)

% =====Simulate step response===== 
ydes=ones(1,length(t));
[y ts]=lsim(sysd,ydes,t); 

% Assemble output 
ye=y(:,1);
ym=y(:,2);
Vcoil=y(:,3);
yehd=y(:,4);
sigma=y(:,5);
err=y(:,6);
pc=(Ac/kp)*yehd-(ky*Kcoil/kp)*Vcoil;

% Plot results 
figure
subplot(2,1,1)
stairs(t,err)
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title('Position Error')
ylabel('error [m]')
grid on 

subplot(2,1,2)
stairs(t,sigma)
title('Integrated Error')
ylabel('\sigma [m*s]')
grid on 

figure
subplot(4,1,1)
stairs(t,ye,'r')
title('Bucket Position')
ylabel('Position [m]')
grid on 

subplot(4,1,2)
stairs(t,ym,'b')
title('Master Position')
ylabel('Position [m]')
grid on 

subplot(4,1,3)
stairs(t,Vcoil,'g')
title('Voltage to coil')
ylabel('V_c_o_i_l [V]')
grid on 

subplot(4,1,4)
stairs(t,pc,'m')
title('Cylinder pressure')
ylabel('p_c [Pa]')
grid on 
xlabel('kT [sec]')


