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Background

Passive Trajectory Enhancing Robot (PTER) Virtual Corridor simulated on PTER

• PTER is a programmable constraint device for restricting motion and simulating haptic
features (i.e. walls, preprogrammed paths, or elastic interfaces).

• Bilateral tele-operation of remote devices.

• PTER uses friction brakes to constrict motion for simulation of the haptic features.
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PTER’s Existing Brakes / Clutches

• Industrial electromagnetic
friction units from Dynacorp

– Model 310

– Original max torque
300 ft-lbf (407 N-M)

– Rated time constant
0.105 sec (coil build up)

• Modified to eliminate metal to
metal contact

– Reduced available torque

• No provisions of measuring
actual applied torque for
feedback control



Dynamic Response of PTER’s Actuators

• Open Loop Control

• Undesirable Dynamics
– Non-linear electromagnet

– Sliding on pins (binding)

– First order response
• R-L circuit

– Pure time delay
• Coil build up to attract

armature plate

– Steady state error
• Each clutch’s output torque

different

• Max torque ranged from 15 to
125 Ft-Lbf, depending on unit

(Borrowed from Gomes, 1997)



Motorized Clutch Testbed

• Motorized testbed developed to measure physical behavior of
clutches under controlled conditions

• Desired parameters:
– Dynamic response

• Time delay

• First-order time constant

– Dynamic friction behavior
• Two independent variables: clutch excitation and velocity

– Static friction behavior
• Breakaway torque



Clutch Testbed - Dynamic Friction
• Experimental data and model of dynamic torque produced by clutch
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SimPTER - Dynamic Simulation
• Goal: Create an accurate simulation of PTER in order to better evaluate

proposed system enhancements:
– New controllers

– Improved mechanical components

• Simulation features:
– Clutch model

• Dynamic response

• Stick-slip friction model (Karnopp model)

• Power supply dynamics

– Full inertial model of PTER

– Modular architecture (implemented in SIMULINK)

– System parameters based on experimental data

• Actual applications of SimPTER to date:
– Investigation of torque feedback and velocity-based controllers

– Evaluation of Delrin as an alternate friction material



SimPTER - Torque Feedback Controller

• Concept: a clutch with integrated torque sensing could

provide torque feedback

• Controller: Previous look up table with added proportional

torque feedback

• Implemented in simulation
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SimPTER - Torque Feedback Controller
• Simulation - Line Tracking Performance of PTER
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Torque Feedback Control - Testbed
• Testbed implementation - Improved torque following performance (~35Hz rate)

• Oscillation at higher gains may be reduced with higher controller sample rate
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Clutch with Integrated Torque Sensor
• Spoke transmits torque

from friction

• Spoke locates and
supports armature plate

• Spoke deflects under
vertical engagement
and torque transmission

• Strain gauge
measurement
proportional to
transmitted torque
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Prototype Unit
• Three spokes to locate armature

plate and transmit torque

• Total of four strain gauges
mounted on two spokes

• Design Considerations
– Available magnetic force

– Strength / Cyclic fatigue

– Sensor sensitivity

– Material selection
• Spokes

– Aluminum 7075-T651

• Armature Plate
– Low carbon steel

• Alternative friction material



Experimental Digital Control of Prototype

• Nonlinear feed-forward based on quadratic torque mapping

• Absolute value of torque fed back (direction insensitive)

• Proportional control based on error (kp)

• Larger gain equates to larger disturbance and error
rejection
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Digital Control of Prototype - Results

• Labview processing controller at a non-deterministic 50 Hz
(ts ≈ 0.02 sec)

• Small gains stabilized torque

• Large gains cause system to go unstable due to insufficient
controller sampling rate.



Future Work
• Faster Digital Controller

– dSPACE & Real Time Workshop

• Alternative Friction Materials to
moderate stick-slip transition

– Delrin: µs = 0.20, µd = 0.35

• Power Supply Upgrade
– Bipolar

– Larger current and voltage ratings

• Make SimPTER more modular
– Investigate further component

improvements

– Apply to other passive systems

• Manufacture three more redesigned
clutches

• Upgrade other components of
PTER

– Replace position
potentiometers (i.e., use
encoders or resolvers)

– Tachometers

– Remount strain gauges in
handle force sensor

– Computer and software

• Program old and new haptic
algorithms

• Bilateral control of Hurbirt


