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Summary

Haptic interfaces have various applications ranging from training devices to super

joysticks for remotely operated robots. Existing marketed haptic interfaces rely on

powered actuators to resist motion or apply force to the user, simulating desired virtual

boundaries and other haptic features. Due to the size or nature of certain applications, it

may not be desirable to use a haptic interface with capabilities of overpowering the

human's input. This has opened the area of passive haptic interfaces. Passive haptic

interfaces do not use actuators capable of adding energy to the system, but rather utilize

actuators that dissipate or redirect user supplied energy. PTER (Passive Trajectory

Enhancing Robot) is a two-degree of freedom passive haptic robot test bed, utilizing

clutches to dissipate or redirect user supplied energy in order to simulate virtual

boundaries. Deficiencies in PTER's actuators have been identified in past research.

This research initially surveys industrial available clutch / brakes, but none are

found to suit the project's requirements. Efforts are then turned to redesigning the existing

Dynacorp electromagnetic friction clutches. The new clutches incorporate provisions to

measure actual applied torque for use with feedback control and rely on a new spring

back mechanism to ensure repeatable engagement and disengagement. Careful attention

is given to torque measuring sensitivity and endurance strength of the new components.

One prototype clutch is built, tested, and modeled. Benefits of closed loop proportional

torque control are demonstrated with experiments and advantages of various digital

controllers are simulated.


