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Overview

• Background

• Description of existing actuators and their deficiencies

• Alternative clutches / brakes

• Redesign of PTER’s existing Dynacorp brakes / clutches

• Calibration of the new torque sensor

• Digital feedback control, experimental & simulation

• Conclusion

• Future work

• Questions
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Background

Passive Trajectory Enhancing Robot (PTER)                  Virtual Corridor simulated on PTER

• PTER uses friction brakes to constrict motion for simulation of haptic features.

• Over actuated
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PTER’s Existing Brakes / Clutches

• Industrial electromagnetic
friction units from Dynacorp
– Model 310

– Original max torque 
300 ft-lbf (407 N-M)

– Rated time constant
0.105 sec (coil build up)

• Modified to eliminate metal to
metal contact
– Reduced available torque

• No provisions of measuring
actual applied torque for
feedback control
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Dynamic Response of PTER’s Actuators

• Open Loop Control

• Undesirable Dynamics
– Non-linear electromagnet

– Sliding on pins (binding)

– First order response
• R-L circuit

– Pure time delay
• Coil build up to attract

armature plate

– Steady state error
• Each clutch’s output torque

different

• Max torque ranged from 15 to
125 Ft-Lbf, depending on unit
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Alternative Brakes / Clutches

• Hysteresis
– Low torque rattings (2.5 oz-in (0.013 lbf-ft) -- 3200 oz-in (16.67 lbf-ft))

– Cogging

– Hysteresis in actuation curve

• Eddy Current
– Torque dependent on both slip velocity and applied current

– Large scale applications

• Magnetic Particle
– Required to turn a full revolution for redistribution of magnetic particles

(for consistent operation)

• Electro-Rheological
– Not much information available
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Electromagnetic Friction

• Metal to metal contact for completing the
magnetic circuit

• Friction material is only used for
stabilizing torque

• Max torque
– 5 oz-in (0.026 lbf-ft) to 465 lbf-ft

• Response consists of both mechanical and
electrical (applied voltage)

• Dynamic times depend on size of the unit
(Kebco)
– Pure time delay: t11 = 0.004 - 0.055 sec.

– Rise time: t12 = 0.006 - 0.240 sec.

– Engagement time: t1 = 0.01 - 0.295 sec.
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New Design Concept With Torque Sensor
• Spoke transmits torque

from friction

• Spoke locates and
supports armature plate

• Spoke deflects under
vertical engagement
and torque transmission

• Strain gauge
measurement
proportional to
transmitted torque

Friction
Force

Engagement force
from electromagnet

Elastic Spoke

Section of
armature plate

Rigid hub mounted to shaft

Strain
Gauge
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Modified Clutch Layout (Top View)
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Modified Clutch (Section View)
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Spoke Def - Bod Model

Torque
Bending

Axial Deflection
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Integration Constants (Torque Bending)
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Electromagnet Model
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Design Considerations

• Available magnetic force

• Cyclic fatigue

• Physical size constraints

• Sensor sensitivity

• Material selection
– Spokes

• Delrin 100P

• Steel ASTM-A514

• Aluminum 7075-T651

– Armature Plate
• Low carbon steel 

(under 1010)

• Alternative friction material
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Torque Bar Calibration

• Strain measured with strain gauges in a half bridge

• Simple beam theory used to relate applied torque

• Spring scale used to apply approximate known torque

• Measurements compared, found to be sufficiently close



16

Clutch’s Sensor Calibration

• Strain in spokes measured by
strain gauges in a full bridge

• First order equation fitting
strain to measured torque from
torque bar

• Model predicted a scaling factor
of 3.361x105

– 9.94% discrepancy from actual

• Model’s predicted spring
constants
– Axial -- 1.77x103 lbf/in

– Radial -- 2,217 lbf-in/deg
lbf)-(in  818.410057.3 5 += spokex ετ
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Torque vs. Current Calibration

(Quadratic & Linear) 761111812 −+= iiτ MSE = 148 (4.1)

(Quadratic) 20232 2 −= iτ MSE = 164 (23.4)

(Linear) 269502 −= iτ MSE = 340 (207.6)

(Quadratic, No Offset)
2221i=τ MSE = 238 (126.5)
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Digital Control

• Nonlinear feed-forward based on quadratic torque mapping

• Absolute value of torque fed back (direction insensitive)

• Proportional control based on error

• Larger gain equates to larger disturbance and error
rejection

i=f( τ)
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Experimental Results

• Labview processing controller at a non-deterministic 50 Hz
(ts ≈ 0.02 sec)

• Small gains stabilized torque

• Large gains caused system to go unstable
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S a tu ra t io n
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• Second order response
– tr ≈ 0.056 sec

– %OS ≈ 25%

– ωn = 61.25 rad/sec

– ξ = 0.40

• Voltage applied to a first order system (RL Circuit)
– R ≈ 11.68Ω
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Power Supply Data vs. Simulation
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Digital Stability -- Gain Margin

• i ≈ 0.9 amps for unstable experiment
– kclutch = 435 in-lbf / amp

• ts = 0.02 (50 Hz)
– Gain margin = 5.011 db

– Max system gain: kpkclutch = 1.78

– Max controller gain: kp= 0.0041 amps / in-lbf

– Error & disturbance rejection to 36%

• ts = 0.002 (500Hz)
– Gain margin = 22.475 db

– Max system gain: kpkclutch = 13.30

– Max controller gain: kp= 0.0306 amps / in-lbf

– Error & disturbance rejection to 7%
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Simulations for Regulating @ 250 in-lbf

( ts = 0.02 (50 Hz),   kp = 0.0041 ) ( ts = 0.002 (500 Hz),  kp = 0.02 )

• Increased sampling rate allows increased proportional gain
and increased error rejection

• Strong evidence that instability is caused by relatively slow
controller and quick  second order underdamped power
supply dynamics
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Digital PD Control

i=f( τ)
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Digital PD Regulating @ 250 in-lbf

( α = 0.5 )  ( α = 0.7 )

(Simulations)

α K kp kd Adjusted  kp Adjusted  kd
0.5 16.25 8.125 8.125 0.0163 0.0163
0.7 38.75 12 28 0.024 0.056
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Reference Tracking (Digital PD)

• α = 0.5
– kpkclutch = 8.125

– kdkclutch = 8.125

• Online gain normalization based on estimated clutch gain
from feed-forward actuation.

(Simulations)
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Stick / Slip of the Armature Plate

• Determine if the armature plate
comes to rest, sticking then
slipping, causing the instability
or limit cycle

• Compare angular velocity of the
Shaft hub with the angular
velocity of the armature plate

• Numerically differentiate and
filter data

• Armature plate appears to not
come to rest while hub is
moving

)()( 2121 θθτθθτ ��

� −=⇒−= kk

(Data from unstable experiment displayed in slide 19)
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Closing Remarks -- Conclusion

• Industrial available clutches / brakes were not found
appropriate for our application.

• Redesigned electromagnetic clutch incorporating a torque
sensor for feedback control was developed and one
prototype was built.

• More thorough modeling & testing of the new clutch and
power supply combination.

• Feasibility and benefits of closed loop control were
demonstrated.

• Power Supply dynamics became a dominant factor.

• Faster digital sampling required for effective disturbance
rejection
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Closing Remarks -- Future Work -- I

• Faster Digital Controller
– dSPACE & Real Time workshop

– Hyperkernal

• Online Parameter Identification

• Analog Control

• Alternative Friction Materials
– Delrin: µs = 0.20,  µd = 0.35

• Power Supply Upgrade
– Bipolar

– Larger current and voltage ratings

• Design Modifications
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Closing Remarks -- Future Work -- II

• Manufacture three more units

• Upgrade other components of PTER
– Replace position potentiometers (Encoders, Resolvers)

– Tachometers

– Remount strain gauges in force sensors

– Computer and Software

• Programming of old and new haptic algortihms

• Bilateral control of Hurbirt

• Possible improvements to the design of PTER
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Questions

• What do you mean?

• How can you justify that?

• I don’t agree!

• Why didn’t you……..?

• Did you try………….?

• Etc?
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Digital Control of a fast Power Supply

• With an open loop gain of “1”, disturbance rejection is
limited to only 50%

• Systems dynamics become much quicker then the digital
controller
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Tuning of the RL circuit

• Pro
– Addition of resistors and capacitors can

tune the circuit for desirable second
order dynamics

• Con
– Limited by achievable output

• Increasing “R” increases damping and
required voltage

• Large “L” causes low damping and low
natural frequency

• Small “C” increases natural frequency.
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Stick / Slip Dynamic Model

• Account for braking force through the armature plate,
compliant spoke, and to the hub.

• Karnopp model utilized for friction force.

• Damping added to account for viscous friction in the
bearings & material damping in the spoke

• Stiff spoke and small armature plate results in a stiff
system that Simulink can not successfully integrate.

• Fixed step simulations gave erroneous information
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PTER’s original clutch/brake. Section view of clutch/brake.

Industrial electromagnetic friction clutch / brakes (Dynacorp Model 310).

• Time constant for coil build up: τ = 0.105sec ( given applied voltage)

• Original max rated torque = 300 Ft-Lbf  (407 N-M)

• Max voltage: V = 24 volts

• Max current: I = 2.376 amps

• Non asbestos friction material with coefficient of friction:  µ = 0.45

• Modified to eliminate metal to metal contact (reduce max torque capabilities)
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Hysteresis & Eddy Current

Hysteresis

• Max torque ratings
– 2.5 oz-in (0.013 lbf-ft) -- 3200 oz-in (16.67 lbf-ft)

• No rubbing parts

• Hysteresis in the torque vs current mapping

• Cogging

Eddy Current

• Torque dependent on both slip velocity and
applied current

• Large scale applications
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Magnetic Particle

• Max torque
– 5 oz-in (0.026 lbf-ft) to 738 lbf-ft

• Torque generated by shear and tensile
stress between attracted magnetic
particles

• Dynamic time constants ranging from
0.009 to 1.31 sec., depending on the
size of the unit.

• Clean sealed operation

• Required to turn a full revolution to
redistribute magnetic particles (for
consistent operation)


